Evaluate
\frac{1164487}{3}\approx 388162.333333333
Factor
\frac{271 \cdot 4297}{3} = 388162\frac{1}{3} = 388162.3333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)4657948}\\\end{array}
Use the 1^{st} digit 4 from dividend 4657948
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)4657948}\\\end{array}
Since 4 is less than 12, use the next digit 6 from dividend 4657948 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)4657948}\\\end{array}
Use the 2^{nd} digit 6 from dividend 4657948
\begin{array}{l}\phantom{12)}03\phantom{4}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}10\\\end{array}
Find closest multiple of 12 to 46. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 46 to get reminder 10. Add 3 to quotient.
\begin{array}{l}\phantom{12)}03\phantom{5}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\end{array}
Use the 3^{rd} digit 5 from dividend 4657948
\begin{array}{l}\phantom{12)}038\phantom{6}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}9\\\end{array}
Find closest multiple of 12 to 105. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 105 to get reminder 9. Add 8 to quotient.
\begin{array}{l}\phantom{12)}038\phantom{7}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}97\\\end{array}
Use the 4^{th} digit 7 from dividend 4657948
\begin{array}{l}\phantom{12)}0388\phantom{8}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}97\\\phantom{12)}\underline{\phantom{99}96\phantom{999}}\\\phantom{12)999}1\\\end{array}
Find closest multiple of 12 to 97. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 97 to get reminder 1. Add 8 to quotient.
\begin{array}{l}\phantom{12)}0388\phantom{9}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}97\\\phantom{12)}\underline{\phantom{99}96\phantom{999}}\\\phantom{12)999}19\\\end{array}
Use the 5^{th} digit 9 from dividend 4657948
\begin{array}{l}\phantom{12)}03881\phantom{10}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}97\\\phantom{12)}\underline{\phantom{99}96\phantom{999}}\\\phantom{12)999}19\\\phantom{12)}\underline{\phantom{999}12\phantom{99}}\\\phantom{12)9999}7\\\end{array}
Find closest multiple of 12 to 19. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 19 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{12)}03881\phantom{11}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}97\\\phantom{12)}\underline{\phantom{99}96\phantom{999}}\\\phantom{12)999}19\\\phantom{12)}\underline{\phantom{999}12\phantom{99}}\\\phantom{12)9999}74\\\end{array}
Use the 6^{th} digit 4 from dividend 4657948
\begin{array}{l}\phantom{12)}038816\phantom{12}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}97\\\phantom{12)}\underline{\phantom{99}96\phantom{999}}\\\phantom{12)999}19\\\phantom{12)}\underline{\phantom{999}12\phantom{99}}\\\phantom{12)9999}74\\\phantom{12)}\underline{\phantom{9999}72\phantom{9}}\\\phantom{12)99999}2\\\end{array}
Find closest multiple of 12 to 74. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 74 to get reminder 2. Add 6 to quotient.
\begin{array}{l}\phantom{12)}038816\phantom{13}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}97\\\phantom{12)}\underline{\phantom{99}96\phantom{999}}\\\phantom{12)999}19\\\phantom{12)}\underline{\phantom{999}12\phantom{99}}\\\phantom{12)9999}74\\\phantom{12)}\underline{\phantom{9999}72\phantom{9}}\\\phantom{12)99999}28\\\end{array}
Use the 7^{th} digit 8 from dividend 4657948
\begin{array}{l}\phantom{12)}0388162\phantom{14}\\12\overline{)4657948}\\\phantom{12)}\underline{\phantom{}36\phantom{99999}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}97\\\phantom{12)}\underline{\phantom{99}96\phantom{999}}\\\phantom{12)999}19\\\phantom{12)}\underline{\phantom{999}12\phantom{99}}\\\phantom{12)9999}74\\\phantom{12)}\underline{\phantom{9999}72\phantom{9}}\\\phantom{12)99999}28\\\phantom{12)}\underline{\phantom{99999}24\phantom{}}\\\phantom{12)999999}4\\\end{array}
Find closest multiple of 12 to 28. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 28 to get reminder 4. Add 2 to quotient.
\text{Quotient: }388162 \text{Reminder: }4
Since 4 is less than 12, stop the division. The reminder is 4. The topmost line 0388162 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 388162.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}