Solve for t
t = \frac{\log_{\frac{3049}{3000}} {(1.154)}}{6} \approx 1.473477094
Solve for t (complex solution)
t=\frac{i\pi n_{1}}{3\ln(\frac{3049}{3000})}+\frac{\log_{\frac{3049}{3000}}\left(1.154\right)}{6}
n_{1}\in \mathrm{Z}
Share
Copied to clipboard
\frac{4616}{4000}=\left(1+\frac{0.098}{6}\right)^{6t}
Divide both sides by 4000.
\frac{577}{500}=\left(1+\frac{0.098}{6}\right)^{6t}
Reduce the fraction \frac{4616}{4000} to lowest terms by extracting and canceling out 8.
\frac{577}{500}=\left(1+\frac{98}{6000}\right)^{6t}
Expand \frac{0.098}{6} by multiplying both numerator and the denominator by 1000.
\frac{577}{500}=\left(1+\frac{49}{3000}\right)^{6t}
Reduce the fraction \frac{98}{6000} to lowest terms by extracting and canceling out 2.
\frac{577}{500}=\left(\frac{3049}{3000}\right)^{6t}
Add 1 and \frac{49}{3000} to get \frac{3049}{3000}.
\left(\frac{3049}{3000}\right)^{6t}=\frac{577}{500}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{3049}{3000}\right)^{6t})=\log(\frac{577}{500})
Take the logarithm of both sides of the equation.
6t\log(\frac{3049}{3000})=\log(\frac{577}{500})
The logarithm of a number raised to a power is the power times the logarithm of the number.
6t=\frac{\log(\frac{577}{500})}{\log(\frac{3049}{3000})}
Divide both sides by \log(\frac{3049}{3000}).
6t=\log_{\frac{3049}{3000}}\left(\frac{577}{500}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\ln(\frac{577}{500})}{6\ln(\frac{3049}{3000})}
Divide both sides by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}