Evaluate
\frac{92}{19}\approx 4.842105263
Factor
\frac{2 ^ {2} \cdot 23}{19} = 4\frac{16}{19} = 4.842105263157895
Share
Copied to clipboard
\begin{array}{l}\phantom{95)}\phantom{1}\\95\overline{)460}\\\end{array}
Use the 1^{st} digit 4 from dividend 460
\begin{array}{l}\phantom{95)}0\phantom{2}\\95\overline{)460}\\\end{array}
Since 4 is less than 95, use the next digit 6 from dividend 460 and add 0 to the quotient
\begin{array}{l}\phantom{95)}0\phantom{3}\\95\overline{)460}\\\end{array}
Use the 2^{nd} digit 6 from dividend 460
\begin{array}{l}\phantom{95)}00\phantom{4}\\95\overline{)460}\\\end{array}
Since 46 is less than 95, use the next digit 0 from dividend 460 and add 0 to the quotient
\begin{array}{l}\phantom{95)}00\phantom{5}\\95\overline{)460}\\\end{array}
Use the 3^{rd} digit 0 from dividend 460
\begin{array}{l}\phantom{95)}004\phantom{6}\\95\overline{)460}\\\phantom{95)}\underline{\phantom{}380\phantom{}}\\\phantom{95)9}80\\\end{array}
Find closest multiple of 95 to 460. We see that 4 \times 95 = 380 is the nearest. Now subtract 380 from 460 to get reminder 80. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }80
Since 80 is less than 95, stop the division. The reminder is 80. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}