Solve for x
x=-\frac{112}{187}\approx -0.598930481
x=0
Graph
Share
Copied to clipboard
x\left(46.75x+28\right)=0
Factor out x.
x=0 x=-\frac{112}{187}
To find equation solutions, solve x=0 and \frac{187x}{4}+28=0.
46.75x^{2}+28x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}}}{2\times 46.75}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 46.75 for a, 28 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±28}{2\times 46.75}
Take the square root of 28^{2}.
x=\frac{-28±28}{93.5}
Multiply 2 times 46.75.
x=\frac{0}{93.5}
Now solve the equation x=\frac{-28±28}{93.5} when ± is plus. Add -28 to 28.
x=0
Divide 0 by 93.5 by multiplying 0 by the reciprocal of 93.5.
x=-\frac{56}{93.5}
Now solve the equation x=\frac{-28±28}{93.5} when ± is minus. Subtract 28 from -28.
x=-\frac{112}{187}
Divide -56 by 93.5 by multiplying -56 by the reciprocal of 93.5.
x=0 x=-\frac{112}{187}
The equation is now solved.
46.75x^{2}+28x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{46.75x^{2}+28x}{46.75}=\frac{0}{46.75}
Divide both sides of the equation by 46.75, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{28}{46.75}x=\frac{0}{46.75}
Dividing by 46.75 undoes the multiplication by 46.75.
x^{2}+\frac{112}{187}x=\frac{0}{46.75}
Divide 28 by 46.75 by multiplying 28 by the reciprocal of 46.75.
x^{2}+\frac{112}{187}x=0
Divide 0 by 46.75 by multiplying 0 by the reciprocal of 46.75.
x^{2}+\frac{112}{187}x+\frac{56}{187}^{2}=\frac{56}{187}^{2}
Divide \frac{112}{187}, the coefficient of the x term, by 2 to get \frac{56}{187}. Then add the square of \frac{56}{187} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{112}{187}x+\frac{3136}{34969}=\frac{3136}{34969}
Square \frac{56}{187} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{56}{187}\right)^{2}=\frac{3136}{34969}
Factor x^{2}+\frac{112}{187}x+\frac{3136}{34969}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{56}{187}\right)^{2}}=\sqrt{\frac{3136}{34969}}
Take the square root of both sides of the equation.
x+\frac{56}{187}=\frac{56}{187} x+\frac{56}{187}=-\frac{56}{187}
Simplify.
x=0 x=-\frac{112}{187}
Subtract \frac{56}{187} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}