Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{-1024}{46}
Divide both sides by 46.
x^{2}=-\frac{512}{23}
Reduce the fraction \frac{-1024}{46} to lowest terms by extracting and canceling out 2.
x=\frac{16\sqrt{46}i}{23} x=-\frac{16\sqrt{46}i}{23}
The equation is now solved.
x^{2}=\frac{-1024}{46}
Divide both sides by 46.
x^{2}=-\frac{512}{23}
Reduce the fraction \frac{-1024}{46} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{512}{23}=0
Add \frac{512}{23} to both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{512}{23}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and \frac{512}{23} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{512}{23}}}{2}
Square 0.
x=\frac{0±\sqrt{-\frac{2048}{23}}}{2}
Multiply -4 times \frac{512}{23}.
x=\frac{0±\frac{32\sqrt{46}i}{23}}{2}
Take the square root of -\frac{2048}{23}.
x=\frac{16\sqrt{46}i}{23}
Now solve the equation x=\frac{0±\frac{32\sqrt{46}i}{23}}{2} when ± is plus.
x=-\frac{16\sqrt{46}i}{23}
Now solve the equation x=\frac{0±\frac{32\sqrt{46}i}{23}}{2} when ± is minus.
x=\frac{16\sqrt{46}i}{23} x=-\frac{16\sqrt{46}i}{23}
The equation is now solved.