Evaluate
\frac{456555628}{65585}\approx 6961.281207593
Factor
\frac{2 ^ {2} \cdot 114138907}{5 \cdot 13 \cdot 1009} = 6961\frac{18443}{65585} = 6961.2812075932
Share
Copied to clipboard
\begin{array}{l}\phantom{65585)}\phantom{1}\\65585\overline{)456555628}\\\end{array}
Use the 1^{st} digit 4 from dividend 456555628
\begin{array}{l}\phantom{65585)}0\phantom{2}\\65585\overline{)456555628}\\\end{array}
Since 4 is less than 65585, use the next digit 5 from dividend 456555628 and add 0 to the quotient
\begin{array}{l}\phantom{65585)}0\phantom{3}\\65585\overline{)456555628}\\\end{array}
Use the 2^{nd} digit 5 from dividend 456555628
\begin{array}{l}\phantom{65585)}00\phantom{4}\\65585\overline{)456555628}\\\end{array}
Since 45 is less than 65585, use the next digit 6 from dividend 456555628 and add 0 to the quotient
\begin{array}{l}\phantom{65585)}00\phantom{5}\\65585\overline{)456555628}\\\end{array}
Use the 3^{rd} digit 6 from dividend 456555628
\begin{array}{l}\phantom{65585)}000\phantom{6}\\65585\overline{)456555628}\\\end{array}
Since 456 is less than 65585, use the next digit 5 from dividend 456555628 and add 0 to the quotient
\begin{array}{l}\phantom{65585)}000\phantom{7}\\65585\overline{)456555628}\\\end{array}
Use the 4^{th} digit 5 from dividend 456555628
\begin{array}{l}\phantom{65585)}0000\phantom{8}\\65585\overline{)456555628}\\\end{array}
Since 4565 is less than 65585, use the next digit 5 from dividend 456555628 and add 0 to the quotient
\begin{array}{l}\phantom{65585)}0000\phantom{9}\\65585\overline{)456555628}\\\end{array}
Use the 5^{th} digit 5 from dividend 456555628
\begin{array}{l}\phantom{65585)}00000\phantom{10}\\65585\overline{)456555628}\\\end{array}
Since 45655 is less than 65585, use the next digit 5 from dividend 456555628 and add 0 to the quotient
\begin{array}{l}\phantom{65585)}00000\phantom{11}\\65585\overline{)456555628}\\\end{array}
Use the 6^{th} digit 5 from dividend 456555628
\begin{array}{l}\phantom{65585)}000006\phantom{12}\\65585\overline{)456555628}\\\phantom{65585)}\underline{\phantom{}393510\phantom{999}}\\\phantom{65585)9}63045\\\end{array}
Find closest multiple of 65585 to 456555. We see that 6 \times 65585 = 393510 is the nearest. Now subtract 393510 from 456555 to get reminder 63045. Add 6 to quotient.
\begin{array}{l}\phantom{65585)}000006\phantom{13}\\65585\overline{)456555628}\\\phantom{65585)}\underline{\phantom{}393510\phantom{999}}\\\phantom{65585)9}630456\\\end{array}
Use the 7^{th} digit 6 from dividend 456555628
\begin{array}{l}\phantom{65585)}0000069\phantom{14}\\65585\overline{)456555628}\\\phantom{65585)}\underline{\phantom{}393510\phantom{999}}\\\phantom{65585)9}630456\\\phantom{65585)}\underline{\phantom{9}590265\phantom{99}}\\\phantom{65585)99}40191\\\end{array}
Find closest multiple of 65585 to 630456. We see that 9 \times 65585 = 590265 is the nearest. Now subtract 590265 from 630456 to get reminder 40191. Add 9 to quotient.
\begin{array}{l}\phantom{65585)}0000069\phantom{15}\\65585\overline{)456555628}\\\phantom{65585)}\underline{\phantom{}393510\phantom{999}}\\\phantom{65585)9}630456\\\phantom{65585)}\underline{\phantom{9}590265\phantom{99}}\\\phantom{65585)99}401912\\\end{array}
Use the 8^{th} digit 2 from dividend 456555628
\begin{array}{l}\phantom{65585)}00000696\phantom{16}\\65585\overline{)456555628}\\\phantom{65585)}\underline{\phantom{}393510\phantom{999}}\\\phantom{65585)9}630456\\\phantom{65585)}\underline{\phantom{9}590265\phantom{99}}\\\phantom{65585)99}401912\\\phantom{65585)}\underline{\phantom{99}393510\phantom{9}}\\\phantom{65585)9999}8402\\\end{array}
Find closest multiple of 65585 to 401912. We see that 6 \times 65585 = 393510 is the nearest. Now subtract 393510 from 401912 to get reminder 8402. Add 6 to quotient.
\begin{array}{l}\phantom{65585)}00000696\phantom{17}\\65585\overline{)456555628}\\\phantom{65585)}\underline{\phantom{}393510\phantom{999}}\\\phantom{65585)9}630456\\\phantom{65585)}\underline{\phantom{9}590265\phantom{99}}\\\phantom{65585)99}401912\\\phantom{65585)}\underline{\phantom{99}393510\phantom{9}}\\\phantom{65585)9999}84028\\\end{array}
Use the 9^{th} digit 8 from dividend 456555628
\begin{array}{l}\phantom{65585)}000006961\phantom{18}\\65585\overline{)456555628}\\\phantom{65585)}\underline{\phantom{}393510\phantom{999}}\\\phantom{65585)9}630456\\\phantom{65585)}\underline{\phantom{9}590265\phantom{99}}\\\phantom{65585)99}401912\\\phantom{65585)}\underline{\phantom{99}393510\phantom{9}}\\\phantom{65585)9999}84028\\\phantom{65585)}\underline{\phantom{9999}65585\phantom{}}\\\phantom{65585)9999}18443\\\end{array}
Find closest multiple of 65585 to 84028. We see that 1 \times 65585 = 65585 is the nearest. Now subtract 65585 from 84028 to get reminder 18443. Add 1 to quotient.
\text{Quotient: }6961 \text{Reminder: }18443
Since 18443 is less than 65585, stop the division. The reminder is 18443. The topmost line 000006961 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6961.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}