456.1173=454.1112 \times 10.8503 \% +456.3145x+459.2117y
Solve for x
x=-\frac{4592117y}{4563145}+\frac{508556090583}{570393125000}
Solve for y
y=-\frac{4563145x}{4592117}+\frac{508556090583}{574014625000}
Graph
Share
Copied to clipboard
456.1173=454.1112\times \frac{108503}{1000000}+456.3145x+459.2117y
Expand \frac{10.8503}{100} by multiplying both numerator and the denominator by 10000.
456.1173=\frac{61590534417}{1250000000}+456.3145x+459.2117y
Multiply 454.1112 and \frac{108503}{1000000} to get \frac{61590534417}{1250000000}.
\frac{61590534417}{1250000000}+456.3145x+459.2117y=456.1173
Swap sides so that all variable terms are on the left hand side.
456.3145x+459.2117y=456.1173-\frac{61590534417}{1250000000}
Subtract \frac{61590534417}{1250000000} from both sides.
456.3145x+459.2117y=\frac{508556090583}{1250000000}
Subtract \frac{61590534417}{1250000000} from 456.1173 to get \frac{508556090583}{1250000000}.
456.3145x=\frac{508556090583}{1250000000}-459.2117y
Subtract 459.2117y from both sides.
456.3145x=-\frac{4592117y}{10000}+\frac{508556090583}{1250000000}
The equation is in standard form.
\frac{456.3145x}{456.3145}=\frac{-\frac{4592117y}{10000}+\frac{508556090583}{1250000000}}{456.3145}
Divide both sides of the equation by 456.3145, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{4592117y}{10000}+\frac{508556090583}{1250000000}}{456.3145}
Dividing by 456.3145 undoes the multiplication by 456.3145.
x=-\frac{4592117y}{4563145}+\frac{508556090583}{570393125000}
Divide \frac{508556090583}{1250000000}-\frac{4592117y}{10000} by 456.3145 by multiplying \frac{508556090583}{1250000000}-\frac{4592117y}{10000} by the reciprocal of 456.3145.
456.1173=454.1112\times \frac{108503}{1000000}+456.3145x+459.2117y
Expand \frac{10.8503}{100} by multiplying both numerator and the denominator by 10000.
456.1173=\frac{61590534417}{1250000000}+456.3145x+459.2117y
Multiply 454.1112 and \frac{108503}{1000000} to get \frac{61590534417}{1250000000}.
\frac{61590534417}{1250000000}+456.3145x+459.2117y=456.1173
Swap sides so that all variable terms are on the left hand side.
456.3145x+459.2117y=456.1173-\frac{61590534417}{1250000000}
Subtract \frac{61590534417}{1250000000} from both sides.
456.3145x+459.2117y=\frac{508556090583}{1250000000}
Subtract \frac{61590534417}{1250000000} from 456.1173 to get \frac{508556090583}{1250000000}.
459.2117y=\frac{508556090583}{1250000000}-456.3145x
Subtract 456.3145x from both sides.
459.2117y=-\frac{912629x}{2000}+\frac{508556090583}{1250000000}
The equation is in standard form.
\frac{459.2117y}{459.2117}=\frac{-\frac{912629x}{2000}+\frac{508556090583}{1250000000}}{459.2117}
Divide both sides of the equation by 459.2117, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{912629x}{2000}+\frac{508556090583}{1250000000}}{459.2117}
Dividing by 459.2117 undoes the multiplication by 459.2117.
y=-\frac{4563145x}{4592117}+\frac{508556090583}{574014625000}
Divide \frac{508556090583}{1250000000}-\frac{912629x}{2000} by 459.2117 by multiplying \frac{508556090583}{1250000000}-\frac{912629x}{2000} by the reciprocal of 459.2117.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}