Evaluate
19
Factor
19
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)456}\\\end{array}
Use the 1^{st} digit 4 from dividend 456
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)456}\\\end{array}
Since 4 is less than 24, use the next digit 5 from dividend 456 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)456}\\\end{array}
Use the 2^{nd} digit 5 from dividend 456
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)456}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}21\\\end{array}
Find closest multiple of 24 to 45. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 45 to get reminder 21. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)456}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}216\\\end{array}
Use the 3^{rd} digit 6 from dividend 456
\begin{array}{l}\phantom{24)}019\phantom{6}\\24\overline{)456}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}216\\\phantom{24)}\underline{\phantom{}216\phantom{}}\\\phantom{24)999}0\\\end{array}
Find closest multiple of 24 to 216. We see that 9 \times 24 = 216 is the nearest. Now subtract 216 from 216 to get reminder 0. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }0
Since 0 is less than 24, stop the division. The reminder is 0. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}