Solve for x (complex solution)
x=50+30\sqrt{22}i\approx 50+140.712472795i
x=-30\sqrt{22}i+50\approx 50-140.712472795i
Graph
Share
Copied to clipboard
-2x^{2}+200x+400=45000
Swap sides so that all variable terms are on the left hand side.
-2x^{2}+200x+400-45000=0
Subtract 45000 from both sides.
-2x^{2}+200x-44600=0
Subtract 45000 from 400 to get -44600.
x=\frac{-200±\sqrt{200^{2}-4\left(-2\right)\left(-44600\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 200 for b, and -44600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-2\right)\left(-44600\right)}}{2\left(-2\right)}
Square 200.
x=\frac{-200±\sqrt{40000+8\left(-44600\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-200±\sqrt{40000-356800}}{2\left(-2\right)}
Multiply 8 times -44600.
x=\frac{-200±\sqrt{-316800}}{2\left(-2\right)}
Add 40000 to -356800.
x=\frac{-200±120\sqrt{22}i}{2\left(-2\right)}
Take the square root of -316800.
x=\frac{-200±120\sqrt{22}i}{-4}
Multiply 2 times -2.
x=\frac{-200+120\sqrt{22}i}{-4}
Now solve the equation x=\frac{-200±120\sqrt{22}i}{-4} when ± is plus. Add -200 to 120i\sqrt{22}.
x=-30\sqrt{22}i+50
Divide -200+120i\sqrt{22} by -4.
x=\frac{-120\sqrt{22}i-200}{-4}
Now solve the equation x=\frac{-200±120\sqrt{22}i}{-4} when ± is minus. Subtract 120i\sqrt{22} from -200.
x=50+30\sqrt{22}i
Divide -200-120i\sqrt{22} by -4.
x=-30\sqrt{22}i+50 x=50+30\sqrt{22}i
The equation is now solved.
-2x^{2}+200x+400=45000
Swap sides so that all variable terms are on the left hand side.
-2x^{2}+200x=45000-400
Subtract 400 from both sides.
-2x^{2}+200x=44600
Subtract 400 from 45000 to get 44600.
\frac{-2x^{2}+200x}{-2}=\frac{44600}{-2}
Divide both sides by -2.
x^{2}+\frac{200}{-2}x=\frac{44600}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-100x=\frac{44600}{-2}
Divide 200 by -2.
x^{2}-100x=-22300
Divide 44600 by -2.
x^{2}-100x+\left(-50\right)^{2}=-22300+\left(-50\right)^{2}
Divide -100, the coefficient of the x term, by 2 to get -50. Then add the square of -50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-100x+2500=-22300+2500
Square -50.
x^{2}-100x+2500=-19800
Add -22300 to 2500.
\left(x-50\right)^{2}=-19800
Factor x^{2}-100x+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-50\right)^{2}}=\sqrt{-19800}
Take the square root of both sides of the equation.
x-50=30\sqrt{22}i x-50=-30\sqrt{22}i
Simplify.
x=50+30\sqrt{22}i x=-30\sqrt{22}i+50
Add 50 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}