Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

450=2x\left(x+15\right)
Cancel out \pi on both sides.
450=2x^{2}+30x
Use the distributive property to multiply 2x by x+15.
2x^{2}+30x=450
Swap sides so that all variable terms are on the left hand side.
2x^{2}+30x-450=0
Subtract 450 from both sides.
x=\frac{-30±\sqrt{30^{2}-4\times 2\left(-450\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 30 for b, and -450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 2\left(-450\right)}}{2\times 2}
Square 30.
x=\frac{-30±\sqrt{900-8\left(-450\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-30±\sqrt{900+3600}}{2\times 2}
Multiply -8 times -450.
x=\frac{-30±\sqrt{4500}}{2\times 2}
Add 900 to 3600.
x=\frac{-30±30\sqrt{5}}{2\times 2}
Take the square root of 4500.
x=\frac{-30±30\sqrt{5}}{4}
Multiply 2 times 2.
x=\frac{30\sqrt{5}-30}{4}
Now solve the equation x=\frac{-30±30\sqrt{5}}{4} when ± is plus. Add -30 to 30\sqrt{5}.
x=\frac{15\sqrt{5}-15}{2}
Divide -30+30\sqrt{5} by 4.
x=\frac{-30\sqrt{5}-30}{4}
Now solve the equation x=\frac{-30±30\sqrt{5}}{4} when ± is minus. Subtract 30\sqrt{5} from -30.
x=\frac{-15\sqrt{5}-15}{2}
Divide -30-30\sqrt{5} by 4.
x=\frac{15\sqrt{5}-15}{2} x=\frac{-15\sqrt{5}-15}{2}
The equation is now solved.
450=2x\left(x+15\right)
Cancel out \pi on both sides.
450=2x^{2}+30x
Use the distributive property to multiply 2x by x+15.
2x^{2}+30x=450
Swap sides so that all variable terms are on the left hand side.
\frac{2x^{2}+30x}{2}=\frac{450}{2}
Divide both sides by 2.
x^{2}+\frac{30}{2}x=\frac{450}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+15x=\frac{450}{2}
Divide 30 by 2.
x^{2}+15x=225
Divide 450 by 2.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=225+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=225+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=\frac{1125}{4}
Add 225 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{1125}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{1125}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{15\sqrt{5}}{2} x+\frac{15}{2}=-\frac{15\sqrt{5}}{2}
Simplify.
x=\frac{15\sqrt{5}-15}{2} x=\frac{-15\sqrt{5}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.