Solve for m
m=11
Share
Copied to clipboard
450+195m-975=\left(m-2\right)\times 180
Use the distributive property to multiply m-5 by 195.
-525+195m=\left(m-2\right)\times 180
Subtract 975 from 450 to get -525.
-525+195m=180m-360
Use the distributive property to multiply m-2 by 180.
-525+195m-180m=-360
Subtract 180m from both sides.
-525+15m=-360
Combine 195m and -180m to get 15m.
15m=-360+525
Add 525 to both sides.
15m=165
Add -360 and 525 to get 165.
m=\frac{165}{15}
Divide both sides by 15.
m=11
Divide 165 by 15 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}