Solve for z
z=5
Share
Copied to clipboard
45.5=\frac{7}{2}\left(8+z\right)
Multiply \frac{1}{2} and 7 to get \frac{7}{2}.
45.5=\frac{7}{2}\times 8+\frac{7}{2}z
Use the distributive property to multiply \frac{7}{2} by 8+z.
45.5=\frac{7\times 8}{2}+\frac{7}{2}z
Express \frac{7}{2}\times 8 as a single fraction.
45.5=\frac{56}{2}+\frac{7}{2}z
Multiply 7 and 8 to get 56.
45.5=28+\frac{7}{2}z
Divide 56 by 2 to get 28.
28+\frac{7}{2}z=45.5
Swap sides so that all variable terms are on the left hand side.
\frac{7}{2}z=45.5-28
Subtract 28 from both sides.
\frac{7}{2}z=17.5
Subtract 28 from 45.5 to get 17.5.
z=17.5\times \frac{2}{7}
Multiply both sides by \frac{2}{7}, the reciprocal of \frac{7}{2}.
z=\frac{35}{2}\times \frac{2}{7}
Convert decimal number 17.5 to fraction \frac{175}{10}. Reduce the fraction \frac{175}{10} to lowest terms by extracting and canceling out 5.
z=\frac{35\times 2}{2\times 7}
Multiply \frac{35}{2} times \frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
z=\frac{35}{7}
Cancel out 2 in both numerator and denominator.
z=5
Divide 35 by 7 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}