Solve for x
x=24-72\sqrt{5}\approx -136.99689438
x=72\sqrt{5}+24\approx 184.99689438
Graph
Share
Copied to clipboard
45=1+2\left(-\frac{x}{24}\right)+\left(-\frac{x}{24}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1-\frac{x}{24}\right)^{2}.
45=1+\frac{x}{-12}+\left(-\frac{x}{24}\right)^{2}
Cancel out 24, the greatest common factor in 2 and 24.
45=1+\frac{x}{-12}+\left(\frac{x}{24}\right)^{2}
Calculate -\frac{x}{24} to the power of 2 and get \left(\frac{x}{24}\right)^{2}.
45=1+\frac{x}{-12}+\frac{x^{2}}{24^{2}}
To raise \frac{x}{24} to a power, raise both numerator and denominator to the power and then divide.
45=\frac{24^{2}}{24^{2}}+\frac{x}{-12}+\frac{x^{2}}{24^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{24^{2}}{24^{2}}.
45=\frac{24^{2}+x^{2}}{24^{2}}+\frac{x}{-12}
Since \frac{24^{2}}{24^{2}} and \frac{x^{2}}{24^{2}} have the same denominator, add them by adding their numerators.
45=\frac{576+x^{2}}{24^{2}}+\frac{x}{-12}
Combine like terms in 24^{2}+x^{2}.
\frac{576+x^{2}}{24^{2}}+\frac{x}{-12}=45
Swap sides so that all variable terms are on the left hand side.
\frac{576+x^{2}}{24^{2}}+\frac{x}{-12}-45=0
Subtract 45 from both sides.
\frac{576+x^{2}}{576}+\frac{x}{-12}-45=0
Calculate 24 to the power of 2 and get 576.
1+\frac{1}{576}x^{2}+\frac{x}{-12}-45=0
Divide each term of 576+x^{2} by 576 to get 1+\frac{1}{576}x^{2}.
-44+\frac{1}{576}x^{2}+\frac{x}{-12}=0
Subtract 45 from 1 to get -44.
-25344+1x^{2}-48x=0
Multiply both sides of the equation by 576, the least common multiple of 576,-12.
x^{2}-48x-25344=0
Reorder the terms.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-25344\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -48 for b, and -25344 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-25344\right)}}{2}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304+101376}}{2}
Multiply -4 times -25344.
x=\frac{-\left(-48\right)±\sqrt{103680}}{2}
Add 2304 to 101376.
x=\frac{-\left(-48\right)±144\sqrt{5}}{2}
Take the square root of 103680.
x=\frac{48±144\sqrt{5}}{2}
The opposite of -48 is 48.
x=\frac{144\sqrt{5}+48}{2}
Now solve the equation x=\frac{48±144\sqrt{5}}{2} when ± is plus. Add 48 to 144\sqrt{5}.
x=72\sqrt{5}+24
Divide 48+144\sqrt{5} by 2.
x=\frac{48-144\sqrt{5}}{2}
Now solve the equation x=\frac{48±144\sqrt{5}}{2} when ± is minus. Subtract 144\sqrt{5} from 48.
x=24-72\sqrt{5}
Divide 48-144\sqrt{5} by 2.
x=72\sqrt{5}+24 x=24-72\sqrt{5}
The equation is now solved.
45=1+2\left(-\frac{x}{24}\right)+\left(-\frac{x}{24}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1-\frac{x}{24}\right)^{2}.
45=1+\frac{x}{-12}+\left(-\frac{x}{24}\right)^{2}
Cancel out 24, the greatest common factor in 2 and 24.
45=1+\frac{x}{-12}+\left(\frac{x}{24}\right)^{2}
Calculate -\frac{x}{24} to the power of 2 and get \left(\frac{x}{24}\right)^{2}.
45=1+\frac{x}{-12}+\frac{x^{2}}{24^{2}}
To raise \frac{x}{24} to a power, raise both numerator and denominator to the power and then divide.
45=\frac{24^{2}}{24^{2}}+\frac{x}{-12}+\frac{x^{2}}{24^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{24^{2}}{24^{2}}.
45=\frac{24^{2}+x^{2}}{24^{2}}+\frac{x}{-12}
Since \frac{24^{2}}{24^{2}} and \frac{x^{2}}{24^{2}} have the same denominator, add them by adding their numerators.
45=\frac{576+x^{2}}{24^{2}}+\frac{x}{-12}
Combine like terms in 24^{2}+x^{2}.
\frac{576+x^{2}}{24^{2}}+\frac{x}{-12}=45
Swap sides so that all variable terms are on the left hand side.
\frac{576+x^{2}}{576}+\frac{x}{-12}=45
Calculate 24 to the power of 2 and get 576.
1+\frac{1}{576}x^{2}+\frac{x}{-12}=45
Divide each term of 576+x^{2} by 576 to get 1+\frac{1}{576}x^{2}.
\frac{1}{576}x^{2}+\frac{x}{-12}=45-1
Subtract 1 from both sides.
\frac{1}{576}x^{2}+\frac{x}{-12}=44
Subtract 1 from 45 to get 44.
1x^{2}-48x=25344
Multiply both sides of the equation by 576, the least common multiple of 576,-12.
x^{2}-48x=25344
Reorder the terms.
x^{2}-48x+\left(-24\right)^{2}=25344+\left(-24\right)^{2}
Divide -48, the coefficient of the x term, by 2 to get -24. Then add the square of -24 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-48x+576=25344+576
Square -24.
x^{2}-48x+576=25920
Add 25344 to 576.
\left(x-24\right)^{2}=25920
Factor x^{2}-48x+576. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-24\right)^{2}}=\sqrt{25920}
Take the square root of both sides of the equation.
x-24=72\sqrt{5} x-24=-72\sqrt{5}
Simplify.
x=72\sqrt{5}+24 x=24-72\sqrt{5}
Add 24 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}