Solve for x
x=12y-15-\frac{1}{z}
z\neq 0
Solve for y
y=\frac{x}{12}+\frac{5}{4}+\frac{1}{12z}
z\neq 0
Share
Copied to clipboard
z\times 45+3xz=6y\times 6z-3
Multiply both sides of the equation by z.
z\times 45+3xz=36yz-3
Multiply 6 and 6 to get 36.
3xz=36yz-3-z\times 45
Subtract z\times 45 from both sides.
3xz=36yz-3-45z
Multiply -1 and 45 to get -45.
3zx=36yz-45z-3
The equation is in standard form.
\frac{3zx}{3z}=\frac{36yz-45z-3}{3z}
Divide both sides by 3z.
x=\frac{36yz-45z-3}{3z}
Dividing by 3z undoes the multiplication by 3z.
x=12y-15-\frac{1}{z}
Divide 36yz-3-45z by 3z.
z\times 45+3xz=6y\times 6z-3
Multiply both sides of the equation by z.
z\times 45+3xz=36yz-3
Multiply 6 and 6 to get 36.
36yz-3=z\times 45+3xz
Swap sides so that all variable terms are on the left hand side.
36yz=z\times 45+3xz+3
Add 3 to both sides.
36zy=3xz+45z+3
The equation is in standard form.
\frac{36zy}{36z}=\frac{3xz+45z+3}{36z}
Divide both sides by 36z.
y=\frac{3xz+45z+3}{36z}
Dividing by 36z undoes the multiplication by 36z.
y=\frac{x}{12}+\frac{5}{4}+\frac{1}{12z}
Divide 3xz+45z+3 by 36z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}