Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(9x^{2}-4x\right)
Factor out 5.
x\left(9x-4\right)
Consider 9x^{2}-4x. Factor out x.
5x\left(9x-4\right)
Rewrite the complete factored expression.
45x^{2}-20x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 45}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±20}{2\times 45}
Take the square root of \left(-20\right)^{2}.
x=\frac{20±20}{2\times 45}
The opposite of -20 is 20.
x=\frac{20±20}{90}
Multiply 2 times 45.
x=\frac{40}{90}
Now solve the equation x=\frac{20±20}{90} when ± is plus. Add 20 to 20.
x=\frac{4}{9}
Reduce the fraction \frac{40}{90} to lowest terms by extracting and canceling out 10.
x=\frac{0}{90}
Now solve the equation x=\frac{20±20}{90} when ± is minus. Subtract 20 from 20.
x=0
Divide 0 by 90.
45x^{2}-20x=45\left(x-\frac{4}{9}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{9} for x_{1} and 0 for x_{2}.
45x^{2}-20x=45\times \frac{9x-4}{9}x
Subtract \frac{4}{9} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
45x^{2}-20x=5\left(9x-4\right)x
Cancel out 9, the greatest common factor in 45 and 9.