Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(45x-2\right)
Factor out x.
45x^{2}-2x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 45}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±2}{2\times 45}
Take the square root of \left(-2\right)^{2}.
x=\frac{2±2}{2\times 45}
The opposite of -2 is 2.
x=\frac{2±2}{90}
Multiply 2 times 45.
x=\frac{4}{90}
Now solve the equation x=\frac{2±2}{90} when ± is plus. Add 2 to 2.
x=\frac{2}{45}
Reduce the fraction \frac{4}{90} to lowest terms by extracting and canceling out 2.
x=\frac{0}{90}
Now solve the equation x=\frac{2±2}{90} when ± is minus. Subtract 2 from 2.
x=0
Divide 0 by 90.
45x^{2}-2x=45\left(x-\frac{2}{45}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{45} for x_{1} and 0 for x_{2}.
45x^{2}-2x=45\times \frac{45x-2}{45}x
Subtract \frac{2}{45} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
45x^{2}-2x=\left(45x-2\right)x
Cancel out 45, the greatest common factor in 45 and 45.