Factor
5\left(3b+2\right)\left(3b+10\right)
Evaluate
45b^{2}+180b+100
Share
Copied to clipboard
5\left(9b^{2}+36b+20\right)
Factor out 5.
p+q=36 pq=9\times 20=180
Consider 9b^{2}+36b+20. Factor the expression by grouping. First, the expression needs to be rewritten as 9b^{2}+pb+qb+20. To find p and q, set up a system to be solved.
1,180 2,90 3,60 4,45 5,36 6,30 9,20 10,18 12,15
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 180.
1+180=181 2+90=92 3+60=63 4+45=49 5+36=41 6+30=36 9+20=29 10+18=28 12+15=27
Calculate the sum for each pair.
p=6 q=30
The solution is the pair that gives sum 36.
\left(9b^{2}+6b\right)+\left(30b+20\right)
Rewrite 9b^{2}+36b+20 as \left(9b^{2}+6b\right)+\left(30b+20\right).
3b\left(3b+2\right)+10\left(3b+2\right)
Factor out 3b in the first and 10 in the second group.
\left(3b+2\right)\left(3b+10\right)
Factor out common term 3b+2 by using distributive property.
5\left(3b+2\right)\left(3b+10\right)
Rewrite the complete factored expression.
45b^{2}+180b+100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-180±\sqrt{180^{2}-4\times 45\times 100}}{2\times 45}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-180±\sqrt{32400-4\times 45\times 100}}{2\times 45}
Square 180.
b=\frac{-180±\sqrt{32400-180\times 100}}{2\times 45}
Multiply -4 times 45.
b=\frac{-180±\sqrt{32400-18000}}{2\times 45}
Multiply -180 times 100.
b=\frac{-180±\sqrt{14400}}{2\times 45}
Add 32400 to -18000.
b=\frac{-180±120}{2\times 45}
Take the square root of 14400.
b=\frac{-180±120}{90}
Multiply 2 times 45.
b=-\frac{60}{90}
Now solve the equation b=\frac{-180±120}{90} when ± is plus. Add -180 to 120.
b=-\frac{2}{3}
Reduce the fraction \frac{-60}{90} to lowest terms by extracting and canceling out 30.
b=-\frac{300}{90}
Now solve the equation b=\frac{-180±120}{90} when ± is minus. Subtract 120 from -180.
b=-\frac{10}{3}
Reduce the fraction \frac{-300}{90} to lowest terms by extracting and canceling out 30.
45b^{2}+180b+100=45\left(b-\left(-\frac{2}{3}\right)\right)\left(b-\left(-\frac{10}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{3} for x_{1} and -\frac{10}{3} for x_{2}.
45b^{2}+180b+100=45\left(b+\frac{2}{3}\right)\left(b+\frac{10}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
45b^{2}+180b+100=45\times \frac{3b+2}{3}\left(b+\frac{10}{3}\right)
Add \frac{2}{3} to b by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
45b^{2}+180b+100=45\times \frac{3b+2}{3}\times \frac{3b+10}{3}
Add \frac{10}{3} to b by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
45b^{2}+180b+100=45\times \frac{\left(3b+2\right)\left(3b+10\right)}{3\times 3}
Multiply \frac{3b+2}{3} times \frac{3b+10}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
45b^{2}+180b+100=45\times \frac{\left(3b+2\right)\left(3b+10\right)}{9}
Multiply 3 times 3.
45b^{2}+180b+100=5\left(3b+2\right)\left(3b+10\right)
Cancel out 9, the greatest common factor in 45 and 9.
x ^ 2 +4x +\frac{20}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 45
r + s = -4 rs = \frac{20}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -2 - u s = -2 + u
Two numbers r and s sum up to -4 exactly when the average of the two numbers is \frac{1}{2}*-4 = -2. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-2 - u) (-2 + u) = \frac{20}{9}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{20}{9}
4 - u^2 = \frac{20}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{20}{9}-4 = -\frac{16}{9}
Simplify the expression by subtracting 4 on both sides
u^2 = \frac{16}{9} u = \pm\sqrt{\frac{16}{9}} = \pm \frac{4}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-2 - \frac{4}{3} = -3.333 s = -2 + \frac{4}{3} = -0.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}