Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

45x^{2}+95x+75=5000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
45x^{2}+95x+75-5000=5000-5000
Subtract 5000 from both sides of the equation.
45x^{2}+95x+75-5000=0
Subtracting 5000 from itself leaves 0.
45x^{2}+95x-4925=0
Subtract 5000 from 75.
x=\frac{-95±\sqrt{95^{2}-4\times 45\left(-4925\right)}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, 95 for b, and -4925 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-95±\sqrt{9025-4\times 45\left(-4925\right)}}{2\times 45}
Square 95.
x=\frac{-95±\sqrt{9025-180\left(-4925\right)}}{2\times 45}
Multiply -4 times 45.
x=\frac{-95±\sqrt{9025+886500}}{2\times 45}
Multiply -180 times -4925.
x=\frac{-95±\sqrt{895525}}{2\times 45}
Add 9025 to 886500.
x=\frac{-95±5\sqrt{35821}}{2\times 45}
Take the square root of 895525.
x=\frac{-95±5\sqrt{35821}}{90}
Multiply 2 times 45.
x=\frac{5\sqrt{35821}-95}{90}
Now solve the equation x=\frac{-95±5\sqrt{35821}}{90} when ± is plus. Add -95 to 5\sqrt{35821}.
x=\frac{\sqrt{35821}-19}{18}
Divide -95+5\sqrt{35821} by 90.
x=\frac{-5\sqrt{35821}-95}{90}
Now solve the equation x=\frac{-95±5\sqrt{35821}}{90} when ± is minus. Subtract 5\sqrt{35821} from -95.
x=\frac{-\sqrt{35821}-19}{18}
Divide -95-5\sqrt{35821} by 90.
x=\frac{\sqrt{35821}-19}{18} x=\frac{-\sqrt{35821}-19}{18}
The equation is now solved.
45x^{2}+95x+75=5000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
45x^{2}+95x+75-75=5000-75
Subtract 75 from both sides of the equation.
45x^{2}+95x=5000-75
Subtracting 75 from itself leaves 0.
45x^{2}+95x=4925
Subtract 75 from 5000.
\frac{45x^{2}+95x}{45}=\frac{4925}{45}
Divide both sides by 45.
x^{2}+\frac{95}{45}x=\frac{4925}{45}
Dividing by 45 undoes the multiplication by 45.
x^{2}+\frac{19}{9}x=\frac{4925}{45}
Reduce the fraction \frac{95}{45} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{19}{9}x=\frac{985}{9}
Reduce the fraction \frac{4925}{45} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{19}{9}x+\left(\frac{19}{18}\right)^{2}=\frac{985}{9}+\left(\frac{19}{18}\right)^{2}
Divide \frac{19}{9}, the coefficient of the x term, by 2 to get \frac{19}{18}. Then add the square of \frac{19}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{19}{9}x+\frac{361}{324}=\frac{985}{9}+\frac{361}{324}
Square \frac{19}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{19}{9}x+\frac{361}{324}=\frac{35821}{324}
Add \frac{985}{9} to \frac{361}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{19}{18}\right)^{2}=\frac{35821}{324}
Factor x^{2}+\frac{19}{9}x+\frac{361}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{18}\right)^{2}}=\sqrt{\frac{35821}{324}}
Take the square root of both sides of the equation.
x+\frac{19}{18}=\frac{\sqrt{35821}}{18} x+\frac{19}{18}=-\frac{\sqrt{35821}}{18}
Simplify.
x=\frac{\sqrt{35821}-19}{18} x=\frac{-\sqrt{35821}-19}{18}
Subtract \frac{19}{18} from both sides of the equation.