Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

45xx+x\times 12=8+x\times 12
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
45x^{2}+x\times 12=8+x\times 12
Multiply x and x to get x^{2}.
45x^{2}+x\times 12-x\times 12=8
Subtract x\times 12 from both sides.
45x^{2}=8
Combine x\times 12 and -x\times 12 to get 0.
x^{2}=\frac{8}{45}
Divide both sides by 45.
x=\frac{2\sqrt{10}}{15} x=-\frac{2\sqrt{10}}{15}
Take the square root of both sides of the equation.
45xx+x\times 12=8+x\times 12
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
45x^{2}+x\times 12=8+x\times 12
Multiply x and x to get x^{2}.
45x^{2}+x\times 12-8=x\times 12
Subtract 8 from both sides.
45x^{2}+x\times 12-8-x\times 12=0
Subtract x\times 12 from both sides.
45x^{2}-8=0
Combine x\times 12 and -x\times 12 to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 45\left(-8\right)}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 45\left(-8\right)}}{2\times 45}
Square 0.
x=\frac{0±\sqrt{-180\left(-8\right)}}{2\times 45}
Multiply -4 times 45.
x=\frac{0±\sqrt{1440}}{2\times 45}
Multiply -180 times -8.
x=\frac{0±12\sqrt{10}}{2\times 45}
Take the square root of 1440.
x=\frac{0±12\sqrt{10}}{90}
Multiply 2 times 45.
x=\frac{2\sqrt{10}}{15}
Now solve the equation x=\frac{0±12\sqrt{10}}{90} when ± is plus.
x=-\frac{2\sqrt{10}}{15}
Now solve the equation x=\frac{0±12\sqrt{10}}{90} when ± is minus.
x=\frac{2\sqrt{10}}{15} x=-\frac{2\sqrt{10}}{15}
The equation is now solved.