Evaluate
\frac{45}{16}=2.8125
Factor
\frac{3 ^ {2} \cdot 5}{2 ^ {4}} = 2\frac{13}{16} = 2.8125
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)45}\\\end{array}
Use the 1^{st} digit 4 from dividend 45
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)45}\\\end{array}
Since 4 is less than 16, use the next digit 5 from dividend 45 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)45}\\\end{array}
Use the 2^{nd} digit 5 from dividend 45
\begin{array}{l}\phantom{16)}02\phantom{4}\\16\overline{)45}\\\phantom{16)}\underline{\phantom{}32\phantom{}}\\\phantom{16)}13\\\end{array}
Find closest multiple of 16 to 45. We see that 2 \times 16 = 32 is the nearest. Now subtract 32 from 45 to get reminder 13. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }13
Since 13 is less than 16, stop the division. The reminder is 13. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}