Solve for n
n = \frac{\sqrt{91} + 1}{2} \approx 5.269696007
n=\frac{1-\sqrt{91}}{2}\approx -4.269696007
Share
Copied to clipboard
45\times 2=4\left(n-1\right)n
Multiply both sides by 2.
90=4\left(n-1\right)n
Multiply 45 and 2 to get 90.
90=\left(4n-4\right)n
Use the distributive property to multiply 4 by n-1.
90=4n^{2}-4n
Use the distributive property to multiply 4n-4 by n.
4n^{2}-4n=90
Swap sides so that all variable terms are on the left hand side.
4n^{2}-4n-90=0
Subtract 90 from both sides.
n=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-90\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -4 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-90\right)}}{2\times 4}
Square -4.
n=\frac{-\left(-4\right)±\sqrt{16-16\left(-90\right)}}{2\times 4}
Multiply -4 times 4.
n=\frac{-\left(-4\right)±\sqrt{16+1440}}{2\times 4}
Multiply -16 times -90.
n=\frac{-\left(-4\right)±\sqrt{1456}}{2\times 4}
Add 16 to 1440.
n=\frac{-\left(-4\right)±4\sqrt{91}}{2\times 4}
Take the square root of 1456.
n=\frac{4±4\sqrt{91}}{2\times 4}
The opposite of -4 is 4.
n=\frac{4±4\sqrt{91}}{8}
Multiply 2 times 4.
n=\frac{4\sqrt{91}+4}{8}
Now solve the equation n=\frac{4±4\sqrt{91}}{8} when ± is plus. Add 4 to 4\sqrt{91}.
n=\frac{\sqrt{91}+1}{2}
Divide 4+4\sqrt{91} by 8.
n=\frac{4-4\sqrt{91}}{8}
Now solve the equation n=\frac{4±4\sqrt{91}}{8} when ± is minus. Subtract 4\sqrt{91} from 4.
n=\frac{1-\sqrt{91}}{2}
Divide 4-4\sqrt{91} by 8.
n=\frac{\sqrt{91}+1}{2} n=\frac{1-\sqrt{91}}{2}
The equation is now solved.
45\times 2=4\left(n-1\right)n
Multiply both sides by 2.
90=4\left(n-1\right)n
Multiply 45 and 2 to get 90.
90=\left(4n-4\right)n
Use the distributive property to multiply 4 by n-1.
90=4n^{2}-4n
Use the distributive property to multiply 4n-4 by n.
4n^{2}-4n=90
Swap sides so that all variable terms are on the left hand side.
\frac{4n^{2}-4n}{4}=\frac{90}{4}
Divide both sides by 4.
n^{2}+\left(-\frac{4}{4}\right)n=\frac{90}{4}
Dividing by 4 undoes the multiplication by 4.
n^{2}-n=\frac{90}{4}
Divide -4 by 4.
n^{2}-n=\frac{45}{2}
Reduce the fraction \frac{90}{4} to lowest terms by extracting and canceling out 2.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=\frac{45}{2}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-n+\frac{1}{4}=\frac{45}{2}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-n+\frac{1}{4}=\frac{91}{4}
Add \frac{45}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{1}{2}\right)^{2}=\frac{91}{4}
Factor n^{2}-n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{91}{4}}
Take the square root of both sides of the equation.
n-\frac{1}{2}=\frac{\sqrt{91}}{2} n-\frac{1}{2}=-\frac{\sqrt{91}}{2}
Simplify.
n=\frac{\sqrt{91}+1}{2} n=\frac{1-\sqrt{91}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}