Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-8a^{2}+2a+45
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
p+q=2 pq=-8\times 45=-360
Factor the expression by grouping. First, the expression needs to be rewritten as -8a^{2}+pa+qa+45. To find p and q, set up a system to be solved.
-1,360 -2,180 -3,120 -4,90 -5,72 -6,60 -8,45 -9,40 -10,36 -12,30 -15,24 -18,20
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -360.
-1+360=359 -2+180=178 -3+120=117 -4+90=86 -5+72=67 -6+60=54 -8+45=37 -9+40=31 -10+36=26 -12+30=18 -15+24=9 -18+20=2
Calculate the sum for each pair.
p=20 q=-18
The solution is the pair that gives sum 2.
\left(-8a^{2}+20a\right)+\left(-18a+45\right)
Rewrite -8a^{2}+2a+45 as \left(-8a^{2}+20a\right)+\left(-18a+45\right).
-4a\left(2a-5\right)-9\left(2a-5\right)
Factor out -4a in the first and -9 in the second group.
\left(2a-5\right)\left(-4a-9\right)
Factor out common term 2a-5 by using distributive property.
-8a^{2}+2a+45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-2±\sqrt{2^{2}-4\left(-8\right)\times 45}}{2\left(-8\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-2±\sqrt{4-4\left(-8\right)\times 45}}{2\left(-8\right)}
Square 2.
a=\frac{-2±\sqrt{4+32\times 45}}{2\left(-8\right)}
Multiply -4 times -8.
a=\frac{-2±\sqrt{4+1440}}{2\left(-8\right)}
Multiply 32 times 45.
a=\frac{-2±\sqrt{1444}}{2\left(-8\right)}
Add 4 to 1440.
a=\frac{-2±38}{2\left(-8\right)}
Take the square root of 1444.
a=\frac{-2±38}{-16}
Multiply 2 times -8.
a=\frac{36}{-16}
Now solve the equation a=\frac{-2±38}{-16} when ± is plus. Add -2 to 38.
a=-\frac{9}{4}
Reduce the fraction \frac{36}{-16} to lowest terms by extracting and canceling out 4.
a=-\frac{40}{-16}
Now solve the equation a=\frac{-2±38}{-16} when ± is minus. Subtract 38 from -2.
a=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out 8.
-8a^{2}+2a+45=-8\left(a-\left(-\frac{9}{4}\right)\right)\left(a-\frac{5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{9}{4} for x_{1} and \frac{5}{2} for x_{2}.
-8a^{2}+2a+45=-8\left(a+\frac{9}{4}\right)\left(a-\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-8a^{2}+2a+45=-8\times \frac{-4a-9}{-4}\left(a-\frac{5}{2}\right)
Add \frac{9}{4} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-8a^{2}+2a+45=-8\times \frac{-4a-9}{-4}\times \frac{-2a+5}{-2}
Subtract \frac{5}{2} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-8a^{2}+2a+45=-8\times \frac{\left(-4a-9\right)\left(-2a+5\right)}{-4\left(-2\right)}
Multiply \frac{-4a-9}{-4} times \frac{-2a+5}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-8a^{2}+2a+45=-8\times \frac{\left(-4a-9\right)\left(-2a+5\right)}{8}
Multiply -4 times -2.
-8a^{2}+2a+45=-\left(-4a-9\right)\left(-2a+5\right)
Cancel out 8, the greatest common factor in -8 and 8.