Evaluate
14
Factor
2\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)448}\\\end{array}
Use the 1^{st} digit 4 from dividend 448
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)448}\\\end{array}
Since 4 is less than 32, use the next digit 4 from dividend 448 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)448}\\\end{array}
Use the 2^{nd} digit 4 from dividend 448
\begin{array}{l}\phantom{32)}01\phantom{4}\\32\overline{)448}\\\phantom{32)}\underline{\phantom{}32\phantom{9}}\\\phantom{32)}12\\\end{array}
Find closest multiple of 32 to 44. We see that 1 \times 32 = 32 is the nearest. Now subtract 32 from 44 to get reminder 12. Add 1 to quotient.
\begin{array}{l}\phantom{32)}01\phantom{5}\\32\overline{)448}\\\phantom{32)}\underline{\phantom{}32\phantom{9}}\\\phantom{32)}128\\\end{array}
Use the 3^{rd} digit 8 from dividend 448
\begin{array}{l}\phantom{32)}014\phantom{6}\\32\overline{)448}\\\phantom{32)}\underline{\phantom{}32\phantom{9}}\\\phantom{32)}128\\\phantom{32)}\underline{\phantom{}128\phantom{}}\\\phantom{32)999}0\\\end{array}
Find closest multiple of 32 to 128. We see that 4 \times 32 = 128 is the nearest. Now subtract 128 from 128 to get reminder 0. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }0
Since 0 is less than 32, stop the division. The reminder is 0. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}