Evaluate
2775
Factor
3\times 5^{2}\times 37
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)44400}\\\end{array}
Use the 1^{st} digit 4 from dividend 44400
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)44400}\\\end{array}
Since 4 is less than 16, use the next digit 4 from dividend 44400 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)44400}\\\end{array}
Use the 2^{nd} digit 4 from dividend 44400
\begin{array}{l}\phantom{16)}02\phantom{4}\\16\overline{)44400}\\\phantom{16)}\underline{\phantom{}32\phantom{999}}\\\phantom{16)}12\\\end{array}
Find closest multiple of 16 to 44. We see that 2 \times 16 = 32 is the nearest. Now subtract 32 from 44 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{16)}02\phantom{5}\\16\overline{)44400}\\\phantom{16)}\underline{\phantom{}32\phantom{999}}\\\phantom{16)}124\\\end{array}
Use the 3^{rd} digit 4 from dividend 44400
\begin{array}{l}\phantom{16)}027\phantom{6}\\16\overline{)44400}\\\phantom{16)}\underline{\phantom{}32\phantom{999}}\\\phantom{16)}124\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)9}12\\\end{array}
Find closest multiple of 16 to 124. We see that 7 \times 16 = 112 is the nearest. Now subtract 112 from 124 to get reminder 12. Add 7 to quotient.
\begin{array}{l}\phantom{16)}027\phantom{7}\\16\overline{)44400}\\\phantom{16)}\underline{\phantom{}32\phantom{999}}\\\phantom{16)}124\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)9}120\\\end{array}
Use the 4^{th} digit 0 from dividend 44400
\begin{array}{l}\phantom{16)}0277\phantom{8}\\16\overline{)44400}\\\phantom{16)}\underline{\phantom{}32\phantom{999}}\\\phantom{16)}124\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)9}120\\\phantom{16)}\underline{\phantom{9}112\phantom{9}}\\\phantom{16)999}8\\\end{array}
Find closest multiple of 16 to 120. We see that 7 \times 16 = 112 is the nearest. Now subtract 112 from 120 to get reminder 8. Add 7 to quotient.
\begin{array}{l}\phantom{16)}0277\phantom{9}\\16\overline{)44400}\\\phantom{16)}\underline{\phantom{}32\phantom{999}}\\\phantom{16)}124\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)9}120\\\phantom{16)}\underline{\phantom{9}112\phantom{9}}\\\phantom{16)999}80\\\end{array}
Use the 5^{th} digit 0 from dividend 44400
\begin{array}{l}\phantom{16)}02775\phantom{10}\\16\overline{)44400}\\\phantom{16)}\underline{\phantom{}32\phantom{999}}\\\phantom{16)}124\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)9}120\\\phantom{16)}\underline{\phantom{9}112\phantom{9}}\\\phantom{16)999}80\\\phantom{16)}\underline{\phantom{999}80\phantom{}}\\\phantom{16)99999}0\\\end{array}
Find closest multiple of 16 to 80. We see that 5 \times 16 = 80 is the nearest. Now subtract 80 from 80 to get reminder 0. Add 5 to quotient.
\text{Quotient: }2775 \text{Reminder: }0
Since 0 is less than 16, stop the division. The reminder is 0. The topmost line 02775 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2775.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}