Evaluate
26
Factor
2\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)442}\\\end{array}
Use the 1^{st} digit 4 from dividend 442
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)442}\\\end{array}
Since 4 is less than 17, use the next digit 4 from dividend 442 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)442}\\\end{array}
Use the 2^{nd} digit 4 from dividend 442
\begin{array}{l}\phantom{17)}02\phantom{4}\\17\overline{)442}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}10\\\end{array}
Find closest multiple of 17 to 44. We see that 2 \times 17 = 34 is the nearest. Now subtract 34 from 44 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{17)}02\phantom{5}\\17\overline{)442}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}102\\\end{array}
Use the 3^{rd} digit 2 from dividend 442
\begin{array}{l}\phantom{17)}026\phantom{6}\\17\overline{)442}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}102\\\phantom{17)}\underline{\phantom{}102\phantom{}}\\\phantom{17)999}0\\\end{array}
Find closest multiple of 17 to 102. We see that 6 \times 17 = 102 is the nearest. Now subtract 102 from 102 to get reminder 0. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }0
Since 0 is less than 17, stop the division. The reminder is 0. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}