Evaluate
\frac{441}{13}\approx 33.923076923
Factor
\frac{3 ^ {2} \cdot 7 ^ {2}}{13} = 33\frac{12}{13} = 33.92307692307692
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)441}\\\end{array}
Use the 1^{st} digit 4 from dividend 441
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)441}\\\end{array}
Since 4 is less than 13, use the next digit 4 from dividend 441 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)441}\\\end{array}
Use the 2^{nd} digit 4 from dividend 441
\begin{array}{l}\phantom{13)}03\phantom{4}\\13\overline{)441}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}5\\\end{array}
Find closest multiple of 13 to 44. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 44 to get reminder 5. Add 3 to quotient.
\begin{array}{l}\phantom{13)}03\phantom{5}\\13\overline{)441}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}51\\\end{array}
Use the 3^{rd} digit 1 from dividend 441
\begin{array}{l}\phantom{13)}033\phantom{6}\\13\overline{)441}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}51\\\phantom{13)}\underline{\phantom{9}39\phantom{}}\\\phantom{13)9}12\\\end{array}
Find closest multiple of 13 to 51. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 51 to get reminder 12. Add 3 to quotient.
\text{Quotient: }33 \text{Reminder: }12
Since 12 is less than 13, stop the division. The reminder is 12. The topmost line 033 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}