Solve for x
x=\frac{4y}{5}-1
Solve for y
y=\frac{5\left(x+1\right)}{4}
Graph
Share
Copied to clipboard
-55x-55=-44y
Subtract 44y from both sides. Anything subtracted from zero gives its negation.
-55x=-44y+55
Add 55 to both sides.
-55x=55-44y
The equation is in standard form.
\frac{-55x}{-55}=\frac{55-44y}{-55}
Divide both sides by -55.
x=\frac{55-44y}{-55}
Dividing by -55 undoes the multiplication by -55.
x=\frac{4y}{5}-1
Divide -44y+55 by -55.
44y-55=55x
Add 55x to both sides. Anything plus zero gives itself.
44y=55x+55
Add 55 to both sides.
\frac{44y}{44}=\frac{55x+55}{44}
Divide both sides by 44.
y=\frac{55x+55}{44}
Dividing by 44 undoes the multiplication by 44.
y=\frac{5x+5}{4}
Divide 55+55x by 44.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}