Solve for w
w=-4
w = \frac{11}{2} = 5\frac{1}{2} = 5.5
Share
Copied to clipboard
44=2w^{2}-3w
Use the distributive property to multiply w by 2w-3.
2w^{2}-3w=44
Swap sides so that all variable terms are on the left hand side.
2w^{2}-3w-44=0
Subtract 44 from both sides.
w=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-44\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and -44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-44\right)}}{2\times 2}
Square -3.
w=\frac{-\left(-3\right)±\sqrt{9-8\left(-44\right)}}{2\times 2}
Multiply -4 times 2.
w=\frac{-\left(-3\right)±\sqrt{9+352}}{2\times 2}
Multiply -8 times -44.
w=\frac{-\left(-3\right)±\sqrt{361}}{2\times 2}
Add 9 to 352.
w=\frac{-\left(-3\right)±19}{2\times 2}
Take the square root of 361.
w=\frac{3±19}{2\times 2}
The opposite of -3 is 3.
w=\frac{3±19}{4}
Multiply 2 times 2.
w=\frac{22}{4}
Now solve the equation w=\frac{3±19}{4} when ± is plus. Add 3 to 19.
w=\frac{11}{2}
Reduce the fraction \frac{22}{4} to lowest terms by extracting and canceling out 2.
w=-\frac{16}{4}
Now solve the equation w=\frac{3±19}{4} when ± is minus. Subtract 19 from 3.
w=-4
Divide -16 by 4.
w=\frac{11}{2} w=-4
The equation is now solved.
44=2w^{2}-3w
Use the distributive property to multiply w by 2w-3.
2w^{2}-3w=44
Swap sides so that all variable terms are on the left hand side.
\frac{2w^{2}-3w}{2}=\frac{44}{2}
Divide both sides by 2.
w^{2}-\frac{3}{2}w=\frac{44}{2}
Dividing by 2 undoes the multiplication by 2.
w^{2}-\frac{3}{2}w=22
Divide 44 by 2.
w^{2}-\frac{3}{2}w+\left(-\frac{3}{4}\right)^{2}=22+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-\frac{3}{2}w+\frac{9}{16}=22+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
w^{2}-\frac{3}{2}w+\frac{9}{16}=\frac{361}{16}
Add 22 to \frac{9}{16}.
\left(w-\frac{3}{4}\right)^{2}=\frac{361}{16}
Factor w^{2}-\frac{3}{2}w+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{3}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
Take the square root of both sides of the equation.
w-\frac{3}{4}=\frac{19}{4} w-\frac{3}{4}=-\frac{19}{4}
Simplify.
w=\frac{11}{2} w=-4
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}