Solve for x
x=\frac{2\sqrt{36383465}+3304}{29809}\approx 0.515540325
x=\frac{3304-2\sqrt{36383465}}{29809}\approx -0.293862308
Graph
Quiz
Quadratic Equation
5 problems similar to:
43897+204 { x }^{ 2 } =-59414 { x }^{ 2 } +13216x+52929
Share
Copied to clipboard
43897+204x^{2}+59414x^{2}=13216x+52929
Add 59414x^{2} to both sides.
43897+59618x^{2}=13216x+52929
Combine 204x^{2} and 59414x^{2} to get 59618x^{2}.
43897+59618x^{2}-13216x=52929
Subtract 13216x from both sides.
43897+59618x^{2}-13216x-52929=0
Subtract 52929 from both sides.
-9032+59618x^{2}-13216x=0
Subtract 52929 from 43897 to get -9032.
59618x^{2}-13216x-9032=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13216\right)±\sqrt{\left(-13216\right)^{2}-4\times 59618\left(-9032\right)}}{2\times 59618}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 59618 for a, -13216 for b, and -9032 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13216\right)±\sqrt{174662656-4\times 59618\left(-9032\right)}}{2\times 59618}
Square -13216.
x=\frac{-\left(-13216\right)±\sqrt{174662656-238472\left(-9032\right)}}{2\times 59618}
Multiply -4 times 59618.
x=\frac{-\left(-13216\right)±\sqrt{174662656+2153879104}}{2\times 59618}
Multiply -238472 times -9032.
x=\frac{-\left(-13216\right)±\sqrt{2328541760}}{2\times 59618}
Add 174662656 to 2153879104.
x=\frac{-\left(-13216\right)±8\sqrt{36383465}}{2\times 59618}
Take the square root of 2328541760.
x=\frac{13216±8\sqrt{36383465}}{2\times 59618}
The opposite of -13216 is 13216.
x=\frac{13216±8\sqrt{36383465}}{119236}
Multiply 2 times 59618.
x=\frac{8\sqrt{36383465}+13216}{119236}
Now solve the equation x=\frac{13216±8\sqrt{36383465}}{119236} when ± is plus. Add 13216 to 8\sqrt{36383465}.
x=\frac{2\sqrt{36383465}+3304}{29809}
Divide 13216+8\sqrt{36383465} by 119236.
x=\frac{13216-8\sqrt{36383465}}{119236}
Now solve the equation x=\frac{13216±8\sqrt{36383465}}{119236} when ± is minus. Subtract 8\sqrt{36383465} from 13216.
x=\frac{3304-2\sqrt{36383465}}{29809}
Divide 13216-8\sqrt{36383465} by 119236.
x=\frac{2\sqrt{36383465}+3304}{29809} x=\frac{3304-2\sqrt{36383465}}{29809}
The equation is now solved.
43897+204x^{2}+59414x^{2}=13216x+52929
Add 59414x^{2} to both sides.
43897+59618x^{2}=13216x+52929
Combine 204x^{2} and 59414x^{2} to get 59618x^{2}.
43897+59618x^{2}-13216x=52929
Subtract 13216x from both sides.
59618x^{2}-13216x=52929-43897
Subtract 43897 from both sides.
59618x^{2}-13216x=9032
Subtract 43897 from 52929 to get 9032.
\frac{59618x^{2}-13216x}{59618}=\frac{9032}{59618}
Divide both sides by 59618.
x^{2}+\left(-\frac{13216}{59618}\right)x=\frac{9032}{59618}
Dividing by 59618 undoes the multiplication by 59618.
x^{2}-\frac{6608}{29809}x=\frac{9032}{59618}
Reduce the fraction \frac{-13216}{59618} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{6608}{29809}x=\frac{4516}{29809}
Reduce the fraction \frac{9032}{59618} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{6608}{29809}x+\left(-\frac{3304}{29809}\right)^{2}=\frac{4516}{29809}+\left(-\frac{3304}{29809}\right)^{2}
Divide -\frac{6608}{29809}, the coefficient of the x term, by 2 to get -\frac{3304}{29809}. Then add the square of -\frac{3304}{29809} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6608}{29809}x+\frac{10916416}{888576481}=\frac{4516}{29809}+\frac{10916416}{888576481}
Square -\frac{3304}{29809} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6608}{29809}x+\frac{10916416}{888576481}=\frac{145533860}{888576481}
Add \frac{4516}{29809} to \frac{10916416}{888576481} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3304}{29809}\right)^{2}=\frac{145533860}{888576481}
Factor x^{2}-\frac{6608}{29809}x+\frac{10916416}{888576481}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3304}{29809}\right)^{2}}=\sqrt{\frac{145533860}{888576481}}
Take the square root of both sides of the equation.
x-\frac{3304}{29809}=\frac{2\sqrt{36383465}}{29809} x-\frac{3304}{29809}=-\frac{2\sqrt{36383465}}{29809}
Simplify.
x=\frac{2\sqrt{36383465}+3304}{29809} x=\frac{3304-2\sqrt{36383465}}{29809}
Add \frac{3304}{29809} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}