Evaluate
\frac{437}{29}\approx 15.068965517
Factor
\frac{19 \cdot 23}{29} = 15\frac{2}{29} = 15.068965517241379
Share
Copied to clipboard
\begin{array}{l}\phantom{29)}\phantom{1}\\29\overline{)437}\\\end{array}
Use the 1^{st} digit 4 from dividend 437
\begin{array}{l}\phantom{29)}0\phantom{2}\\29\overline{)437}\\\end{array}
Since 4 is less than 29, use the next digit 3 from dividend 437 and add 0 to the quotient
\begin{array}{l}\phantom{29)}0\phantom{3}\\29\overline{)437}\\\end{array}
Use the 2^{nd} digit 3 from dividend 437
\begin{array}{l}\phantom{29)}01\phantom{4}\\29\overline{)437}\\\phantom{29)}\underline{\phantom{}29\phantom{9}}\\\phantom{29)}14\\\end{array}
Find closest multiple of 29 to 43. We see that 1 \times 29 = 29 is the nearest. Now subtract 29 from 43 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{29)}01\phantom{5}\\29\overline{)437}\\\phantom{29)}\underline{\phantom{}29\phantom{9}}\\\phantom{29)}147\\\end{array}
Use the 3^{rd} digit 7 from dividend 437
\begin{array}{l}\phantom{29)}015\phantom{6}\\29\overline{)437}\\\phantom{29)}\underline{\phantom{}29\phantom{9}}\\\phantom{29)}147\\\phantom{29)}\underline{\phantom{}145\phantom{}}\\\phantom{29)99}2\\\end{array}
Find closest multiple of 29 to 147. We see that 5 \times 29 = 145 is the nearest. Now subtract 145 from 147 to get reminder 2. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }2
Since 2 is less than 29, stop the division. The reminder is 2. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}