Evaluate
\frac{437}{160}=2.73125
Factor
\frac{19 \cdot 23}{2 ^ {5} \cdot 5} = 2\frac{117}{160} = 2.73125
Share
Copied to clipboard
\begin{array}{l}\phantom{160)}\phantom{1}\\160\overline{)437}\\\end{array}
Use the 1^{st} digit 4 from dividend 437
\begin{array}{l}\phantom{160)}0\phantom{2}\\160\overline{)437}\\\end{array}
Since 4 is less than 160, use the next digit 3 from dividend 437 and add 0 to the quotient
\begin{array}{l}\phantom{160)}0\phantom{3}\\160\overline{)437}\\\end{array}
Use the 2^{nd} digit 3 from dividend 437
\begin{array}{l}\phantom{160)}00\phantom{4}\\160\overline{)437}\\\end{array}
Since 43 is less than 160, use the next digit 7 from dividend 437 and add 0 to the quotient
\begin{array}{l}\phantom{160)}00\phantom{5}\\160\overline{)437}\\\end{array}
Use the 3^{rd} digit 7 from dividend 437
\begin{array}{l}\phantom{160)}002\phantom{6}\\160\overline{)437}\\\phantom{160)}\underline{\phantom{}320\phantom{}}\\\phantom{160)}117\\\end{array}
Find closest multiple of 160 to 437. We see that 2 \times 160 = 320 is the nearest. Now subtract 320 from 437 to get reminder 117. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }117
Since 117 is less than 160, stop the division. The reminder is 117. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}