Solve for x
x=\frac{2\sqrt{723460430}}{39907}+\frac{4720}{5701}\approx 2.175920001
x=-\frac{2\sqrt{723460430}}{39907}+\frac{4720}{5701}\approx -0.52007015
Graph
Share
Copied to clipboard
43.897+2.04x^{2}+5.9414x^{2}=13.216x+52.929
Add 5.9414x^{2} to both sides.
43.897+7.9814x^{2}=13.216x+52.929
Combine 2.04x^{2} and 5.9414x^{2} to get 7.9814x^{2}.
43.897+7.9814x^{2}-13.216x=52.929
Subtract 13.216x from both sides.
43.897+7.9814x^{2}-13.216x-52.929=0
Subtract 52.929 from both sides.
-9.032+7.9814x^{2}-13.216x=0
Subtract 52.929 from 43.897 to get -9.032.
7.9814x^{2}-13.216x-9.032=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13.216\right)±\sqrt{\left(-13.216\right)^{2}-4\times 7.9814\left(-9.032\right)}}{2\times 7.9814}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7.9814 for a, -13.216 for b, and -9.032 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13.216\right)±\sqrt{174.662656-4\times 7.9814\left(-9.032\right)}}{2\times 7.9814}
Square -13.216 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-13.216\right)±\sqrt{174.662656-31.9256\left(-9.032\right)}}{2\times 7.9814}
Multiply -4 times 7.9814.
x=\frac{-\left(-13.216\right)±\sqrt{174.662656+288.3520192}}{2\times 7.9814}
Multiply -31.9256 times -9.032 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-13.216\right)±\sqrt{463.0146752}}{2\times 7.9814}
Add 174.662656 to 288.3520192 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-13.216\right)±\frac{\sqrt{723460430}}{1250}}{2\times 7.9814}
Take the square root of 463.0146752.
x=\frac{13.216±\frac{\sqrt{723460430}}{1250}}{2\times 7.9814}
The opposite of -13.216 is 13.216.
x=\frac{13.216±\frac{\sqrt{723460430}}{1250}}{15.9628}
Multiply 2 times 7.9814.
x=\frac{\frac{\sqrt{723460430}}{1250}+\frac{1652}{125}}{15.9628}
Now solve the equation x=\frac{13.216±\frac{\sqrt{723460430}}{1250}}{15.9628} when ± is plus. Add 13.216 to \frac{\sqrt{723460430}}{1250}.
x=\frac{2\sqrt{723460430}}{39907}+\frac{4720}{5701}
Divide \frac{1652}{125}+\frac{\sqrt{723460430}}{1250} by 15.9628 by multiplying \frac{1652}{125}+\frac{\sqrt{723460430}}{1250} by the reciprocal of 15.9628.
x=\frac{-\frac{\sqrt{723460430}}{1250}+\frac{1652}{125}}{15.9628}
Now solve the equation x=\frac{13.216±\frac{\sqrt{723460430}}{1250}}{15.9628} when ± is minus. Subtract \frac{\sqrt{723460430}}{1250} from 13.216.
x=-\frac{2\sqrt{723460430}}{39907}+\frac{4720}{5701}
Divide \frac{1652}{125}-\frac{\sqrt{723460430}}{1250} by 15.9628 by multiplying \frac{1652}{125}-\frac{\sqrt{723460430}}{1250} by the reciprocal of 15.9628.
x=\frac{2\sqrt{723460430}}{39907}+\frac{4720}{5701} x=-\frac{2\sqrt{723460430}}{39907}+\frac{4720}{5701}
The equation is now solved.
43.897+2.04x^{2}+5.9414x^{2}=13.216x+52.929
Add 5.9414x^{2} to both sides.
43.897+7.9814x^{2}=13.216x+52.929
Combine 2.04x^{2} and 5.9414x^{2} to get 7.9814x^{2}.
43.897+7.9814x^{2}-13.216x=52.929
Subtract 13.216x from both sides.
7.9814x^{2}-13.216x=52.929-43.897
Subtract 43.897 from both sides.
7.9814x^{2}-13.216x=9.032
Subtract 43.897 from 52.929 to get 9.032.
\frac{7.9814x^{2}-13.216x}{7.9814}=\frac{9.032}{7.9814}
Divide both sides of the equation by 7.9814, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{13.216}{7.9814}\right)x=\frac{9.032}{7.9814}
Dividing by 7.9814 undoes the multiplication by 7.9814.
x^{2}-\frac{9440}{5701}x=\frac{9.032}{7.9814}
Divide -13.216 by 7.9814 by multiplying -13.216 by the reciprocal of 7.9814.
x^{2}-\frac{9440}{5701}x=\frac{45160}{39907}
Divide 9.032 by 7.9814 by multiplying 9.032 by the reciprocal of 7.9814.
x^{2}-\frac{9440}{5701}x+\left(-\frac{4720}{5701}\right)^{2}=\frac{45160}{39907}+\left(-\frac{4720}{5701}\right)^{2}
Divide -\frac{9440}{5701}, the coefficient of the x term, by 2 to get -\frac{4720}{5701}. Then add the square of -\frac{4720}{5701} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9440}{5701}x+\frac{22278400}{32501401}=\frac{45160}{39907}+\frac{22278400}{32501401}
Square -\frac{4720}{5701} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9440}{5701}x+\frac{22278400}{32501401}=\frac{413405960}{227509807}
Add \frac{45160}{39907} to \frac{22278400}{32501401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4720}{5701}\right)^{2}=\frac{413405960}{227509807}
Factor x^{2}-\frac{9440}{5701}x+\frac{22278400}{32501401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4720}{5701}\right)^{2}}=\sqrt{\frac{413405960}{227509807}}
Take the square root of both sides of the equation.
x-\frac{4720}{5701}=\frac{2\sqrt{723460430}}{39907} x-\frac{4720}{5701}=-\frac{2\sqrt{723460430}}{39907}
Simplify.
x=\frac{2\sqrt{723460430}}{39907}+\frac{4720}{5701} x=-\frac{2\sqrt{723460430}}{39907}+\frac{4720}{5701}
Add \frac{4720}{5701} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}