Evaluate
17
Factor
17
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)425}\\\end{array}
Use the 1^{st} digit 4 from dividend 425
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)425}\\\end{array}
Since 4 is less than 25, use the next digit 2 from dividend 425 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)425}\\\end{array}
Use the 2^{nd} digit 2 from dividend 425
\begin{array}{l}\phantom{25)}01\phantom{4}\\25\overline{)425}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}17\\\end{array}
Find closest multiple of 25 to 42. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 42 to get reminder 17. Add 1 to quotient.
\begin{array}{l}\phantom{25)}01\phantom{5}\\25\overline{)425}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}175\\\end{array}
Use the 3^{rd} digit 5 from dividend 425
\begin{array}{l}\phantom{25)}017\phantom{6}\\25\overline{)425}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}175\\\phantom{25)}\underline{\phantom{}175\phantom{}}\\\phantom{25)999}0\\\end{array}
Find closest multiple of 25 to 175. We see that 7 \times 25 = 175 is the nearest. Now subtract 175 from 175 to get reminder 0. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }0
Since 0 is less than 25, stop the division. The reminder is 0. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}