Evaluate
\frac{17}{4}=4.25
Factor
\frac{17}{2 ^ {2}} = 4\frac{1}{4} = 4.25
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)425}\\\end{array}
Use the 1^{st} digit 4 from dividend 425
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)425}\\\end{array}
Since 4 is less than 100, use the next digit 2 from dividend 425 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)425}\\\end{array}
Use the 2^{nd} digit 2 from dividend 425
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)425}\\\end{array}
Since 42 is less than 100, use the next digit 5 from dividend 425 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)425}\\\end{array}
Use the 3^{rd} digit 5 from dividend 425
\begin{array}{l}\phantom{100)}004\phantom{6}\\100\overline{)425}\\\phantom{100)}\underline{\phantom{}400\phantom{}}\\\phantom{100)9}25\\\end{array}
Find closest multiple of 100 to 425. We see that 4 \times 100 = 400 is the nearest. Now subtract 400 from 425 to get reminder 25. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }25
Since 25 is less than 100, stop the division. The reminder is 25. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}