Solve for x
x=\frac{\sqrt{385}}{56}+\frac{1}{8}\approx 0.475382444
x=-\frac{\sqrt{385}}{56}+\frac{1}{8}\approx -0.225382444
Graph
Share
Copied to clipboard
168x^{2}-42x=18
Use the distributive property to multiply 42x by 4x-1.
168x^{2}-42x-18=0
Subtract 18 from both sides.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 168\left(-18\right)}}{2\times 168}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 168 for a, -42 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 168\left(-18\right)}}{2\times 168}
Square -42.
x=\frac{-\left(-42\right)±\sqrt{1764-672\left(-18\right)}}{2\times 168}
Multiply -4 times 168.
x=\frac{-\left(-42\right)±\sqrt{1764+12096}}{2\times 168}
Multiply -672 times -18.
x=\frac{-\left(-42\right)±\sqrt{13860}}{2\times 168}
Add 1764 to 12096.
x=\frac{-\left(-42\right)±6\sqrt{385}}{2\times 168}
Take the square root of 13860.
x=\frac{42±6\sqrt{385}}{2\times 168}
The opposite of -42 is 42.
x=\frac{42±6\sqrt{385}}{336}
Multiply 2 times 168.
x=\frac{6\sqrt{385}+42}{336}
Now solve the equation x=\frac{42±6\sqrt{385}}{336} when ± is plus. Add 42 to 6\sqrt{385}.
x=\frac{\sqrt{385}}{56}+\frac{1}{8}
Divide 42+6\sqrt{385} by 336.
x=\frac{42-6\sqrt{385}}{336}
Now solve the equation x=\frac{42±6\sqrt{385}}{336} when ± is minus. Subtract 6\sqrt{385} from 42.
x=-\frac{\sqrt{385}}{56}+\frac{1}{8}
Divide 42-6\sqrt{385} by 336.
x=\frac{\sqrt{385}}{56}+\frac{1}{8} x=-\frac{\sqrt{385}}{56}+\frac{1}{8}
The equation is now solved.
168x^{2}-42x=18
Use the distributive property to multiply 42x by 4x-1.
\frac{168x^{2}-42x}{168}=\frac{18}{168}
Divide both sides by 168.
x^{2}+\left(-\frac{42}{168}\right)x=\frac{18}{168}
Dividing by 168 undoes the multiplication by 168.
x^{2}-\frac{1}{4}x=\frac{18}{168}
Reduce the fraction \frac{-42}{168} to lowest terms by extracting and canceling out 42.
x^{2}-\frac{1}{4}x=\frac{3}{28}
Reduce the fraction \frac{18}{168} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{3}{28}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{3}{28}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{55}{448}
Add \frac{3}{28} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=\frac{55}{448}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{55}{448}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{\sqrt{385}}{56} x-\frac{1}{8}=-\frac{\sqrt{385}}{56}
Simplify.
x=\frac{\sqrt{385}}{56}+\frac{1}{8} x=-\frac{\sqrt{385}}{56}+\frac{1}{8}
Add \frac{1}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}