Solve for a
a\geq \frac{710}{7}
Share
Copied to clipboard
42a+3920-56a\leq 2500
Use the distributive property to multiply 56 by 70-a.
-14a+3920\leq 2500
Combine 42a and -56a to get -14a.
-14a\leq 2500-3920
Subtract 3920 from both sides.
-14a\leq -1420
Subtract 3920 from 2500 to get -1420.
a\geq \frac{-1420}{-14}
Divide both sides by -14. Since -14 is negative, the inequality direction is changed.
a\geq \frac{710}{7}
Reduce the fraction \frac{-1420}{-14} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}