Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)42}\\\end{array}
Use the 1^{st} digit 4 from dividend 42
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)42}\\\end{array}
Since 4 is less than 18, use the next digit 2 from dividend 42 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)42}\\\end{array}
Use the 2^{nd} digit 2 from dividend 42
\begin{array}{l}\phantom{18)}02\phantom{4}\\18\overline{)42}\\\phantom{18)}\underline{\phantom{}36\phantom{}}\\\phantom{18)9}6\\\end{array}
Find closest multiple of 18 to 42. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 42 to get reminder 6. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }6
Since 6 is less than 18, stop the division. The reminder is 6. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}