Evaluate
26
Factor
2\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)416}\\\end{array}
Use the 1^{st} digit 4 from dividend 416
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)416}\\\end{array}
Since 4 is less than 16, use the next digit 1 from dividend 416 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)416}\\\end{array}
Use the 2^{nd} digit 1 from dividend 416
\begin{array}{l}\phantom{16)}02\phantom{4}\\16\overline{)416}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}9\\\end{array}
Find closest multiple of 16 to 41. We see that 2 \times 16 = 32 is the nearest. Now subtract 32 from 41 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{16)}02\phantom{5}\\16\overline{)416}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}96\\\end{array}
Use the 3^{rd} digit 6 from dividend 416
\begin{array}{l}\phantom{16)}026\phantom{6}\\16\overline{)416}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}96\\\phantom{16)}\underline{\phantom{9}96\phantom{}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 96. We see that 6 \times 16 = 96 is the nearest. Now subtract 96 from 96 to get reminder 0. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }0
Since 0 is less than 16, stop the division. The reminder is 0. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}