Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

40x^{2}+40x+20\left(x+1\right)^{2}+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Use the distributive property to multiply 40x by x+1.
40x^{2}+40x+20\left(x^{2}+2x+1\right)+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
40x^{2}+40x+20x^{2}+40x+20+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Use the distributive property to multiply 20 by x^{2}+2x+1.
60x^{2}+40x+40x+20+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Combine 40x^{2} and 20x^{2} to get 60x^{2}.
60x^{2}+80x+20+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Combine 40x and 40x to get 80x.
60x^{2}+80x+20+15x^{2}+15x+\left(x+1\right)^{2}\times 15\times 0.5=7260
Use the distributive property to multiply 15x by x+1.
75x^{2}+80x+20+15x+\left(x+1\right)^{2}\times 15\times 0.5=7260
Combine 60x^{2} and 15x^{2} to get 75x^{2}.
75x^{2}+95x+20+\left(x+1\right)^{2}\times 15\times 0.5=7260
Combine 80x and 15x to get 95x.
75x^{2}+95x+20+\left(x^{2}+2x+1\right)\times 15\times 0.5=7260
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
75x^{2}+95x+20+\left(x^{2}+2x+1\right)\times 7.5=7260
Multiply 15 and 0.5 to get 7.5.
75x^{2}+95x+20+7.5x^{2}+15x+7.5=7260
Use the distributive property to multiply x^{2}+2x+1 by 7.5.
82.5x^{2}+95x+20+15x+7.5=7260
Combine 75x^{2} and 7.5x^{2} to get 82.5x^{2}.
82.5x^{2}+110x+20+7.5=7260
Combine 95x and 15x to get 110x.
82.5x^{2}+110x+27.5=7260
Add 20 and 7.5 to get 27.5.
82.5x^{2}+110x+27.5-7260=0
Subtract 7260 from both sides.
82.5x^{2}+110x-7232.5=0
Subtract 7260 from 27.5 to get -7232.5.
x=\frac{-110±\sqrt{110^{2}-4\times 82.5\left(-7232.5\right)}}{2\times 82.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 82.5 for a, 110 for b, and -7232.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-110±\sqrt{12100-4\times 82.5\left(-7232.5\right)}}{2\times 82.5}
Square 110.
x=\frac{-110±\sqrt{12100-330\left(-7232.5\right)}}{2\times 82.5}
Multiply -4 times 82.5.
x=\frac{-110±\sqrt{12100+2386725}}{2\times 82.5}
Multiply -330 times -7232.5.
x=\frac{-110±\sqrt{2398825}}{2\times 82.5}
Add 12100 to 2386725.
x=\frac{-110±55\sqrt{793}}{2\times 82.5}
Take the square root of 2398825.
x=\frac{-110±55\sqrt{793}}{165}
Multiply 2 times 82.5.
x=\frac{55\sqrt{793}-110}{165}
Now solve the equation x=\frac{-110±55\sqrt{793}}{165} when ± is plus. Add -110 to 55\sqrt{793}.
x=\frac{\sqrt{793}-2}{3}
Divide -110+55\sqrt{793} by 165.
x=\frac{-55\sqrt{793}-110}{165}
Now solve the equation x=\frac{-110±55\sqrt{793}}{165} when ± is minus. Subtract 55\sqrt{793} from -110.
x=\frac{-\sqrt{793}-2}{3}
Divide -110-55\sqrt{793} by 165.
x=\frac{\sqrt{793}-2}{3} x=\frac{-\sqrt{793}-2}{3}
The equation is now solved.
40x^{2}+40x+20\left(x+1\right)^{2}+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Use the distributive property to multiply 40x by x+1.
40x^{2}+40x+20\left(x^{2}+2x+1\right)+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
40x^{2}+40x+20x^{2}+40x+20+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Use the distributive property to multiply 20 by x^{2}+2x+1.
60x^{2}+40x+40x+20+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Combine 40x^{2} and 20x^{2} to get 60x^{2}.
60x^{2}+80x+20+15x\left(x+1\right)+\left(x+1\right)^{2}\times 15\times 0.5=7260
Combine 40x and 40x to get 80x.
60x^{2}+80x+20+15x^{2}+15x+\left(x+1\right)^{2}\times 15\times 0.5=7260
Use the distributive property to multiply 15x by x+1.
75x^{2}+80x+20+15x+\left(x+1\right)^{2}\times 15\times 0.5=7260
Combine 60x^{2} and 15x^{2} to get 75x^{2}.
75x^{2}+95x+20+\left(x+1\right)^{2}\times 15\times 0.5=7260
Combine 80x and 15x to get 95x.
75x^{2}+95x+20+\left(x^{2}+2x+1\right)\times 15\times 0.5=7260
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
75x^{2}+95x+20+\left(x^{2}+2x+1\right)\times 7.5=7260
Multiply 15 and 0.5 to get 7.5.
75x^{2}+95x+20+7.5x^{2}+15x+7.5=7260
Use the distributive property to multiply x^{2}+2x+1 by 7.5.
82.5x^{2}+95x+20+15x+7.5=7260
Combine 75x^{2} and 7.5x^{2} to get 82.5x^{2}.
82.5x^{2}+110x+20+7.5=7260
Combine 95x and 15x to get 110x.
82.5x^{2}+110x+27.5=7260
Add 20 and 7.5 to get 27.5.
82.5x^{2}+110x=7260-27.5
Subtract 27.5 from both sides.
82.5x^{2}+110x=7232.5
Subtract 27.5 from 7260 to get 7232.5.
\frac{82.5x^{2}+110x}{82.5}=\frac{7232.5}{82.5}
Divide both sides of the equation by 82.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{110}{82.5}x=\frac{7232.5}{82.5}
Dividing by 82.5 undoes the multiplication by 82.5.
x^{2}+\frac{4}{3}x=\frac{7232.5}{82.5}
Divide 110 by 82.5 by multiplying 110 by the reciprocal of 82.5.
x^{2}+\frac{4}{3}x=\frac{263}{3}
Divide 7232.5 by 82.5 by multiplying 7232.5 by the reciprocal of 82.5.
x^{2}+\frac{4}{3}x+\frac{2}{3}^{2}=\frac{263}{3}+\frac{2}{3}^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{263}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{793}{9}
Add \frac{263}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=\frac{793}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{793}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{\sqrt{793}}{3} x+\frac{2}{3}=-\frac{\sqrt{793}}{3}
Simplify.
x=\frac{\sqrt{793}-2}{3} x=\frac{-\sqrt{793}-2}{3}
Subtract \frac{2}{3} from both sides of the equation.