Solve for x
x = \frac{5 \sqrt{17} + 25}{2} \approx 22.807764064
x = \frac{25 - 5 \sqrt{17}}{2} \approx 2.192235936
Graph
Share
Copied to clipboard
40x+60x-4x^{2}=200
Use the distributive property to multiply 2x by 30-2x.
100x-4x^{2}=200
Combine 40x and 60x to get 100x.
100x-4x^{2}-200=0
Subtract 200 from both sides.
-4x^{2}+100x-200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-4\right)\left(-200\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 100 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-4\right)\left(-200\right)}}{2\left(-4\right)}
Square 100.
x=\frac{-100±\sqrt{10000+16\left(-200\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-100±\sqrt{10000-3200}}{2\left(-4\right)}
Multiply 16 times -200.
x=\frac{-100±\sqrt{6800}}{2\left(-4\right)}
Add 10000 to -3200.
x=\frac{-100±20\sqrt{17}}{2\left(-4\right)}
Take the square root of 6800.
x=\frac{-100±20\sqrt{17}}{-8}
Multiply 2 times -4.
x=\frac{20\sqrt{17}-100}{-8}
Now solve the equation x=\frac{-100±20\sqrt{17}}{-8} when ± is plus. Add -100 to 20\sqrt{17}.
x=\frac{25-5\sqrt{17}}{2}
Divide -100+20\sqrt{17} by -8.
x=\frac{-20\sqrt{17}-100}{-8}
Now solve the equation x=\frac{-100±20\sqrt{17}}{-8} when ± is minus. Subtract 20\sqrt{17} from -100.
x=\frac{5\sqrt{17}+25}{2}
Divide -100-20\sqrt{17} by -8.
x=\frac{25-5\sqrt{17}}{2} x=\frac{5\sqrt{17}+25}{2}
The equation is now solved.
40x+60x-4x^{2}=200
Use the distributive property to multiply 2x by 30-2x.
100x-4x^{2}=200
Combine 40x and 60x to get 100x.
-4x^{2}+100x=200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+100x}{-4}=\frac{200}{-4}
Divide both sides by -4.
x^{2}+\frac{100}{-4}x=\frac{200}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-25x=\frac{200}{-4}
Divide 100 by -4.
x^{2}-25x=-50
Divide 200 by -4.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-50+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-25x+\frac{625}{4}=-50+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-25x+\frac{625}{4}=\frac{425}{4}
Add -50 to \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=\frac{425}{4}
Factor x^{2}-25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{425}{4}}
Take the square root of both sides of the equation.
x-\frac{25}{2}=\frac{5\sqrt{17}}{2} x-\frac{25}{2}=-\frac{5\sqrt{17}}{2}
Simplify.
x=\frac{5\sqrt{17}+25}{2} x=\frac{25-5\sqrt{17}}{2}
Add \frac{25}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}