Solve for x
x=4.5
Graph
Share
Copied to clipboard
40x=\frac{40}{3}x+80\times \frac{2}{3}x-120
Use the distributive property to multiply 80 by \frac{2}{3}x-1.5.
40x=\frac{40}{3}x+\frac{80\times 2}{3}x-120
Express 80\times \frac{2}{3} as a single fraction.
40x=\frac{40}{3}x+\frac{160}{3}x-120
Multiply 80 and 2 to get 160.
40x=\frac{200}{3}x-120
Combine \frac{40}{3}x and \frac{160}{3}x to get \frac{200}{3}x.
40x-\frac{200}{3}x=-120
Subtract \frac{200}{3}x from both sides.
-\frac{80}{3}x=-120
Combine 40x and -\frac{200}{3}x to get -\frac{80}{3}x.
x=-120\left(-\frac{3}{80}\right)
Multiply both sides by -\frac{3}{80}, the reciprocal of -\frac{80}{3}.
x=\frac{-120\left(-3\right)}{80}
Express -120\left(-\frac{3}{80}\right) as a single fraction.
x=\frac{360}{80}
Multiply -120 and -3 to get 360.
x=\frac{9}{2}
Reduce the fraction \frac{360}{80} to lowest terms by extracting and canceling out 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}