Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(8t-t^{2}\right)
Factor out 5.
t\left(8-t\right)
Consider 8t-t^{2}. Factor out t.
5t\left(-t+8\right)
Rewrite the complete factored expression.
-5t^{2}+40t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-40±\sqrt{40^{2}}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-40±40}{2\left(-5\right)}
Take the square root of 40^{2}.
t=\frac{-40±40}{-10}
Multiply 2 times -5.
t=\frac{0}{-10}
Now solve the equation t=\frac{-40±40}{-10} when ± is plus. Add -40 to 40.
t=0
Divide 0 by -10.
t=-\frac{80}{-10}
Now solve the equation t=\frac{-40±40}{-10} when ± is minus. Subtract 40 from -40.
t=8
Divide -80 by -10.
-5t^{2}+40t=-5t\left(t-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 8 for x_{2}.