Solve for a
a=-\sqrt{4037979}i\approx -0-2009.472318794i
a=\sqrt{4037979}i\approx 2009.472318794i
Share
Copied to clipboard
40400-a^{2}=4078379
Swap sides so that all variable terms are on the left hand side.
-a^{2}=4078379-40400
Subtract 40400 from both sides.
-a^{2}=4037979
Subtract 40400 from 4078379 to get 4037979.
a^{2}=-4037979
Divide both sides by -1.
a=\sqrt{4037979}i a=-\sqrt{4037979}i
The equation is now solved.
40400-a^{2}=4078379
Swap sides so that all variable terms are on the left hand side.
40400-a^{2}-4078379=0
Subtract 4078379 from both sides.
-4037979-a^{2}=0
Subtract 4078379 from 40400 to get -4037979.
-a^{2}-4037979=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-4037979\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -4037979 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-1\right)\left(-4037979\right)}}{2\left(-1\right)}
Square 0.
a=\frac{0±\sqrt{4\left(-4037979\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{0±\sqrt{-16151916}}{2\left(-1\right)}
Multiply 4 times -4037979.
a=\frac{0±2\sqrt{4037979}i}{2\left(-1\right)}
Take the square root of -16151916.
a=\frac{0±2\sqrt{4037979}i}{-2}
Multiply 2 times -1.
a=-\sqrt{4037979}i
Now solve the equation a=\frac{0±2\sqrt{4037979}i}{-2} when ± is plus.
a=\sqrt{4037979}i
Now solve the equation a=\frac{0±2\sqrt{4037979}i}{-2} when ± is minus.
a=-\sqrt{4037979}i a=\sqrt{4037979}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}