Evaluate
\frac{8065}{3}\approx 2688.333333333
Factor
\frac{5 \cdot 1613}{3} = 2688\frac{1}{3} = 2688.3333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)40325}\\\end{array}
Use the 1^{st} digit 4 from dividend 40325
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)40325}\\\end{array}
Since 4 is less than 15, use the next digit 0 from dividend 40325 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)40325}\\\end{array}
Use the 2^{nd} digit 0 from dividend 40325
\begin{array}{l}\phantom{15)}02\phantom{4}\\15\overline{)40325}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)}10\\\end{array}
Find closest multiple of 15 to 40. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 40 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{15)}02\phantom{5}\\15\overline{)40325}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)}103\\\end{array}
Use the 3^{rd} digit 3 from dividend 40325
\begin{array}{l}\phantom{15)}026\phantom{6}\\15\overline{)40325}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)}103\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)9}13\\\end{array}
Find closest multiple of 15 to 103. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 103 to get reminder 13. Add 6 to quotient.
\begin{array}{l}\phantom{15)}026\phantom{7}\\15\overline{)40325}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)}103\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)9}132\\\end{array}
Use the 4^{th} digit 2 from dividend 40325
\begin{array}{l}\phantom{15)}0268\phantom{8}\\15\overline{)40325}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)}103\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)9}132\\\phantom{15)}\underline{\phantom{9}120\phantom{9}}\\\phantom{15)99}12\\\end{array}
Find closest multiple of 15 to 132. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 132 to get reminder 12. Add 8 to quotient.
\begin{array}{l}\phantom{15)}0268\phantom{9}\\15\overline{)40325}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)}103\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)9}132\\\phantom{15)}\underline{\phantom{9}120\phantom{9}}\\\phantom{15)99}125\\\end{array}
Use the 5^{th} digit 5 from dividend 40325
\begin{array}{l}\phantom{15)}02688\phantom{10}\\15\overline{)40325}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)}103\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)9}132\\\phantom{15)}\underline{\phantom{9}120\phantom{9}}\\\phantom{15)99}125\\\phantom{15)}\underline{\phantom{99}120\phantom{}}\\\phantom{15)9999}5\\\end{array}
Find closest multiple of 15 to 125. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 125 to get reminder 5. Add 8 to quotient.
\text{Quotient: }2688 \text{Reminder: }5
Since 5 is less than 15, stop the division. The reminder is 5. The topmost line 02688 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2688.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}