Evaluate
\frac{401}{73}\approx 5.493150685
Factor
\frac{401}{73} = 5\frac{36}{73} = 5.493150684931507
Share
Copied to clipboard
\begin{array}{l}\phantom{73)}\phantom{1}\\73\overline{)401}\\\end{array}
Use the 1^{st} digit 4 from dividend 401
\begin{array}{l}\phantom{73)}0\phantom{2}\\73\overline{)401}\\\end{array}
Since 4 is less than 73, use the next digit 0 from dividend 401 and add 0 to the quotient
\begin{array}{l}\phantom{73)}0\phantom{3}\\73\overline{)401}\\\end{array}
Use the 2^{nd} digit 0 from dividend 401
\begin{array}{l}\phantom{73)}00\phantom{4}\\73\overline{)401}\\\end{array}
Since 40 is less than 73, use the next digit 1 from dividend 401 and add 0 to the quotient
\begin{array}{l}\phantom{73)}00\phantom{5}\\73\overline{)401}\\\end{array}
Use the 3^{rd} digit 1 from dividend 401
\begin{array}{l}\phantom{73)}005\phantom{6}\\73\overline{)401}\\\phantom{73)}\underline{\phantom{}365\phantom{}}\\\phantom{73)9}36\\\end{array}
Find closest multiple of 73 to 401. We see that 5 \times 73 = 365 is the nearest. Now subtract 365 from 401 to get reminder 36. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }36
Since 36 is less than 73, stop the division. The reminder is 36. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}