Evaluate
\frac{200}{49}\approx 4.081632653
Factor
\frac{2 ^ {3} \cdot 5 ^ {2}}{7 ^ {2}} = 4\frac{4}{49} = 4.081632653061225
Share
Copied to clipboard
\begin{array}{l}\phantom{98)}\phantom{1}\\98\overline{)400}\\\end{array}
Use the 1^{st} digit 4 from dividend 400
\begin{array}{l}\phantom{98)}0\phantom{2}\\98\overline{)400}\\\end{array}
Since 4 is less than 98, use the next digit 0 from dividend 400 and add 0 to the quotient
\begin{array}{l}\phantom{98)}0\phantom{3}\\98\overline{)400}\\\end{array}
Use the 2^{nd} digit 0 from dividend 400
\begin{array}{l}\phantom{98)}00\phantom{4}\\98\overline{)400}\\\end{array}
Since 40 is less than 98, use the next digit 0 from dividend 400 and add 0 to the quotient
\begin{array}{l}\phantom{98)}00\phantom{5}\\98\overline{)400}\\\end{array}
Use the 3^{rd} digit 0 from dividend 400
\begin{array}{l}\phantom{98)}004\phantom{6}\\98\overline{)400}\\\phantom{98)}\underline{\phantom{}392\phantom{}}\\\phantom{98)99}8\\\end{array}
Find closest multiple of 98 to 400. We see that 4 \times 98 = 392 is the nearest. Now subtract 392 from 400 to get reminder 8. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }8
Since 8 is less than 98, stop the division. The reminder is 8. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}