Evaluate
25
Factor
5^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)400}\\\end{array}
Use the 1^{st} digit 4 from dividend 400
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)400}\\\end{array}
Since 4 is less than 16, use the next digit 0 from dividend 400 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)400}\\\end{array}
Use the 2^{nd} digit 0 from dividend 400
\begin{array}{l}\phantom{16)}02\phantom{4}\\16\overline{)400}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}8\\\end{array}
Find closest multiple of 16 to 40. We see that 2 \times 16 = 32 is the nearest. Now subtract 32 from 40 to get reminder 8. Add 2 to quotient.
\begin{array}{l}\phantom{16)}02\phantom{5}\\16\overline{)400}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 400
\begin{array}{l}\phantom{16)}025\phantom{6}\\16\overline{)400}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}80\\\phantom{16)}\underline{\phantom{9}80\phantom{}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 80. We see that 5 \times 16 = 80 is the nearest. Now subtract 80 from 80 to get reminder 0. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }0
Since 0 is less than 16, stop the division. The reminder is 0. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}