Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

400=\frac{1}{2}bb+\frac{1}{2}b\times 7
Use the distributive property to multiply \frac{1}{2}b by b+7.
400=\frac{1}{2}b^{2}+\frac{1}{2}b\times 7
Multiply b and b to get b^{2}.
400=\frac{1}{2}b^{2}+\frac{7}{2}b
Multiply \frac{1}{2} and 7 to get \frac{7}{2}.
\frac{1}{2}b^{2}+\frac{7}{2}b=400
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}b^{2}+\frac{7}{2}b-400=0
Subtract 400 from both sides.
b=\frac{-\frac{7}{2}±\sqrt{\left(\frac{7}{2}\right)^{2}-4\times \frac{1}{2}\left(-400\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{7}{2} for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\frac{7}{2}±\sqrt{\frac{49}{4}-4\times \frac{1}{2}\left(-400\right)}}{2\times \frac{1}{2}}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
b=\frac{-\frac{7}{2}±\sqrt{\frac{49}{4}-2\left(-400\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
b=\frac{-\frac{7}{2}±\sqrt{\frac{49}{4}+800}}{2\times \frac{1}{2}}
Multiply -2 times -400.
b=\frac{-\frac{7}{2}±\sqrt{\frac{3249}{4}}}{2\times \frac{1}{2}}
Add \frac{49}{4} to 800.
b=\frac{-\frac{7}{2}±\frac{57}{2}}{2\times \frac{1}{2}}
Take the square root of \frac{3249}{4}.
b=\frac{-\frac{7}{2}±\frac{57}{2}}{1}
Multiply 2 times \frac{1}{2}.
b=\frac{25}{1}
Now solve the equation b=\frac{-\frac{7}{2}±\frac{57}{2}}{1} when ± is plus. Add -\frac{7}{2} to \frac{57}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
b=25
Divide 25 by 1.
b=-\frac{32}{1}
Now solve the equation b=\frac{-\frac{7}{2}±\frac{57}{2}}{1} when ± is minus. Subtract \frac{57}{2} from -\frac{7}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
b=-32
Divide -32 by 1.
b=25 b=-32
The equation is now solved.
400=\frac{1}{2}bb+\frac{1}{2}b\times 7
Use the distributive property to multiply \frac{1}{2}b by b+7.
400=\frac{1}{2}b^{2}+\frac{1}{2}b\times 7
Multiply b and b to get b^{2}.
400=\frac{1}{2}b^{2}+\frac{7}{2}b
Multiply \frac{1}{2} and 7 to get \frac{7}{2}.
\frac{1}{2}b^{2}+\frac{7}{2}b=400
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{1}{2}b^{2}+\frac{7}{2}b}{\frac{1}{2}}=\frac{400}{\frac{1}{2}}
Multiply both sides by 2.
b^{2}+\frac{\frac{7}{2}}{\frac{1}{2}}b=\frac{400}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
b^{2}+7b=\frac{400}{\frac{1}{2}}
Divide \frac{7}{2} by \frac{1}{2} by multiplying \frac{7}{2} by the reciprocal of \frac{1}{2}.
b^{2}+7b=800
Divide 400 by \frac{1}{2} by multiplying 400 by the reciprocal of \frac{1}{2}.
b^{2}+7b+\left(\frac{7}{2}\right)^{2}=800+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+7b+\frac{49}{4}=800+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
b^{2}+7b+\frac{49}{4}=\frac{3249}{4}
Add 800 to \frac{49}{4}.
\left(b+\frac{7}{2}\right)^{2}=\frac{3249}{4}
Factor b^{2}+7b+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{7}{2}\right)^{2}}=\sqrt{\frac{3249}{4}}
Take the square root of both sides of the equation.
b+\frac{7}{2}=\frac{57}{2} b+\frac{7}{2}=-\frac{57}{2}
Simplify.
b=25 b=-32
Subtract \frac{7}{2} from both sides of the equation.