Solve for x
x=\frac{-y-25}{2}
Solve for y
y=-2x-25
Graph
Share
Copied to clipboard
40+2x=15-y
The opposite of -2x is 2x.
2x=15-y-40
Subtract 40 from both sides.
2x=-25-y
Subtract 40 from 15 to get -25.
2x=-y-25
The equation is in standard form.
\frac{2x}{2}=\frac{-y-25}{2}
Divide both sides by 2.
x=\frac{-y-25}{2}
Dividing by 2 undoes the multiplication by 2.
40+2x=15-y
The opposite of -2x is 2x.
15-y=40+2x
Swap sides so that all variable terms are on the left hand side.
-y=40+2x-15
Subtract 15 from both sides.
-y=25+2x
Subtract 15 from 40 to get 25.
-y=2x+25
The equation is in standard form.
\frac{-y}{-1}=\frac{2x+25}{-1}
Divide both sides by -1.
y=\frac{2x+25}{-1}
Dividing by -1 undoes the multiplication by -1.
y=-2x-25
Divide 25+2x by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}