Evaluate
\frac{9641}{240}\approx 40.170833333
Factor
\frac{31 \cdot 311}{2 ^ {4} \cdot 3 \cdot 5} = 40\frac{41}{240} = 40.170833333333334
Share
Copied to clipboard
40+\frac{1}{6}+\frac{15}{3600}
Reduce the fraction \frac{10}{60} to lowest terms by extracting and canceling out 10.
\frac{240}{6}+\frac{1}{6}+\frac{15}{3600}
Convert 40 to fraction \frac{240}{6}.
\frac{240+1}{6}+\frac{15}{3600}
Since \frac{240}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{241}{6}+\frac{15}{3600}
Add 240 and 1 to get 241.
\frac{241}{6}+\frac{1}{240}
Reduce the fraction \frac{15}{3600} to lowest terms by extracting and canceling out 15.
\frac{9640}{240}+\frac{1}{240}
Least common multiple of 6 and 240 is 240. Convert \frac{241}{6} and \frac{1}{240} to fractions with denominator 240.
\frac{9640+1}{240}
Since \frac{9640}{240} and \frac{1}{240} have the same denominator, add them by adding their numerators.
\frac{9641}{240}
Add 9640 and 1 to get 9641.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}